/* cpteqr.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static complex c_b1 = {0.f,0.f}; static complex c_b2 = {1.f,0.f}; static integer c__0 = 0; static integer c__1 = 1; /* Subroutine */ int cpteqr_(char *compz, integer *n, real *d__, real *e, complex *z__, integer *ldz, real *work, integer *info) { /* System generated locals */ integer z_dim1, z_offset, i__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ complex c__[1] /* was [1][1] */; integer i__; complex vt[1] /* was [1][1] */; integer nru; extern logical lsame_(char *, char *); extern /* Subroutine */ int claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *), xerbla_(char *, integer *), cbdsqr_(char *, integer *, integer *, integer *, integer *, real *, real *, complex *, integer *, complex *, integer *, complex *, integer *, real *, integer *); integer icompz; extern /* Subroutine */ int spttrf_(integer *, real *, real *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CPTEQR computes all eigenvalues and, optionally, eigenvectors of a */ /* symmetric positive definite tridiagonal matrix by first factoring the */ /* matrix using SPTTRF and then calling CBDSQR to compute the singular */ /* values of the bidiagonal factor. */ /* This routine computes the eigenvalues of the positive definite */ /* tridiagonal matrix to high relative accuracy. This means that if the */ /* eigenvalues range over many orders of magnitude in size, then the */ /* small eigenvalues and corresponding eigenvectors will be computed */ /* more accurately than, for example, with the standard QR method. */ /* The eigenvectors of a full or band positive definite Hermitian matrix */ /* can also be found if CHETRD, CHPTRD, or CHBTRD has been used to */ /* reduce this matrix to tridiagonal form. (The reduction to */ /* tridiagonal form, however, may preclude the possibility of obtaining */ /* high relative accuracy in the small eigenvalues of the original */ /* matrix, if these eigenvalues range over many orders of magnitude.) */ /* Arguments */ /* ========= */ /* COMPZ (input) CHARACTER*1 */ /* = 'N': Compute eigenvalues only. */ /* = 'V': Compute eigenvectors of original Hermitian */ /* matrix also. Array Z contains the unitary matrix */ /* used to reduce the original matrix to tridiagonal */ /* form. */ /* = 'I': Compute eigenvectors of tridiagonal matrix also. */ /* N (input) INTEGER */ /* The order of the matrix. N >= 0. */ /* D (input/output) REAL array, dimension (N) */ /* On entry, the n diagonal elements of the tridiagonal matrix. */ /* On normal exit, D contains the eigenvalues, in descending */ /* order. */ /* E (input/output) REAL array, dimension (N-1) */ /* On entry, the (n-1) subdiagonal elements of the tridiagonal */ /* matrix. */ /* On exit, E has been destroyed. */ /* Z (input/output) COMPLEX array, dimension (LDZ, N) */ /* On entry, if COMPZ = 'V', the unitary matrix used in the */ /* reduction to tridiagonal form. */ /* On exit, if COMPZ = 'V', the orthonormal eigenvectors of the */ /* original Hermitian matrix; */ /* if COMPZ = 'I', the orthonormal eigenvectors of the */ /* tridiagonal matrix. */ /* If INFO > 0 on exit, Z contains the eigenvectors associated */ /* with only the stored eigenvalues. */ /* If COMPZ = 'N', then Z is not referenced. */ /* LDZ (input) INTEGER */ /* The leading dimension of the array Z. LDZ >= 1, and if */ /* COMPZ = 'V' or 'I', LDZ >= max(1,N). */ /* WORK (workspace) REAL array, dimension (4*N) */ /* INFO (output) INTEGER */ /* = 0: successful exit. */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > 0: if INFO = i, and i is: */ /* <= N the Cholesky factorization of the matrix could */ /* not be performed because the i-th principal minor */ /* was not positive definite. */ /* > N the SVD algorithm failed to converge; */ /* if INFO = N+i, i off-diagonal elements of the */ /* bidiagonal factor did not converge to zero. */ /* ==================================================================== */ /* .. Parameters .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --d__; --e; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --work; /* Function Body */ *info = 0; if (lsame_(compz, "N")) { icompz = 0; } else if (lsame_(compz, "V")) { icompz = 1; } else if (lsame_(compz, "I")) { icompz = 2; } else { icompz = -1; } if (icompz < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) { *info = -6; } if (*info != 0) { i__1 = -(*info); xerbla_("CPTEQR", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } if (*n == 1) { if (icompz > 0) { i__1 = z_dim1 + 1; z__[i__1].r = 1.f, z__[i__1].i = 0.f; } return 0; } if (icompz == 2) { claset_("Full", n, n, &c_b1, &c_b2, &z__[z_offset], ldz); } /* Call SPTTRF to factor the matrix. */ spttrf_(n, &d__[1], &e[1], info); if (*info != 0) { return 0; } i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { d__[i__] = sqrt(d__[i__]); /* L10: */ } i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { e[i__] *= d__[i__]; /* L20: */ } /* Call CBDSQR to compute the singular values/vectors of the */ /* bidiagonal factor. */ if (icompz > 0) { nru = *n; } else { nru = 0; } cbdsqr_("Lower", n, &c__0, &nru, &c__0, &d__[1], &e[1], vt, &c__1, &z__[ z_offset], ldz, c__, &c__1, &work[1], info); /* Square the singular values. */ if (*info == 0) { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { d__[i__] *= d__[i__]; /* L30: */ } } else { *info = *n + *info; } return 0; /* End of CPTEQR */ } /* cpteqr_ */