/* cppcon.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int cppcon_(char *uplo, integer *n, complex *ap, real *anorm, real *rcond, complex *work, real *rwork, integer *info) { /* System generated locals */ integer i__1; real r__1, r__2; /* Builtin functions */ double r_imag(complex *); /* Local variables */ integer ix, kase; real scale; extern logical lsame_(char *, char *); integer isave[3]; logical upper; extern /* Subroutine */ int clacn2_(integer *, complex *, complex *, real *, integer *, integer *); extern integer icamax_(integer *, complex *, integer *); real scalel; extern doublereal slamch_(char *); real scaleu; extern /* Subroutine */ int xerbla_(char *, integer *), clatps_( char *, char *, char *, char *, integer *, complex *, complex *, real *, real *, integer *); real ainvnm; extern /* Subroutine */ int csrscl_(integer *, real *, complex *, integer *); char normin[1]; real smlnum; /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* Modified to call CLACN2 in place of CLACON, 10 Feb 03, SJH. */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CPPCON estimates the reciprocal of the condition number (in the */ /* 1-norm) of a complex Hermitian positive definite packed matrix using */ /* the Cholesky factorization A = U**H*U or A = L*L**H computed by */ /* CPPTRF. */ /* An estimate is obtained for norm(inv(A)), and the reciprocal of the */ /* condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored; */ /* = 'L': Lower triangle of A is stored. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* AP (input) COMPLEX array, dimension (N*(N+1)/2) */ /* The triangular factor U or L from the Cholesky factorization */ /* A = U**H*U or A = L*L**H, packed columnwise in a linear */ /* array. The j-th column of U or L is stored in the array AP */ /* as follows: */ /* if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j; */ /* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n. */ /* ANORM (input) REAL */ /* The 1-norm (or infinity-norm) of the Hermitian matrix A. */ /* RCOND (output) REAL */ /* The reciprocal of the condition number of the matrix A, */ /* computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an */ /* estimate of the 1-norm of inv(A) computed in this routine. */ /* WORK (workspace) COMPLEX array, dimension (2*N) */ /* RWORK (workspace) REAL array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Statement Functions .. */ /* .. */ /* .. Statement Function definitions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --rwork; --work; --ap; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*anorm < 0.f) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_("CPPCON", &i__1); return 0; } /* Quick return if possible */ *rcond = 0.f; if (*n == 0) { *rcond = 1.f; return 0; } else if (*anorm == 0.f) { return 0; } smlnum = slamch_("Safe minimum"); /* Estimate the 1-norm of the inverse. */ kase = 0; *(unsigned char *)normin = 'N'; L10: clacn2_(n, &work[*n + 1], &work[1], &ainvnm, &kase, isave); if (kase != 0) { if (upper) { /* Multiply by inv(U'). */ clatps_("Upper", "Conjugate transpose", "Non-unit", normin, n, & ap[1], &work[1], &scalel, &rwork[1], info); *(unsigned char *)normin = 'Y'; /* Multiply by inv(U). */ clatps_("Upper", "No transpose", "Non-unit", normin, n, &ap[1], & work[1], &scaleu, &rwork[1], info); } else { /* Multiply by inv(L). */ clatps_("Lower", "No transpose", "Non-unit", normin, n, &ap[1], & work[1], &scalel, &rwork[1], info); *(unsigned char *)normin = 'Y'; /* Multiply by inv(L'). */ clatps_("Lower", "Conjugate transpose", "Non-unit", normin, n, & ap[1], &work[1], &scaleu, &rwork[1], info); } /* Multiply by 1/SCALE if doing so will not cause overflow. */ scale = scalel * scaleu; if (scale != 1.f) { ix = icamax_(n, &work[1], &c__1); i__1 = ix; if (scale < ((r__1 = work[i__1].r, dabs(r__1)) + (r__2 = r_imag(& work[ix]), dabs(r__2))) * smlnum || scale == 0.f) { goto L20; } csrscl_(n, &scale, &work[1], &c__1); } goto L10; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.f) { *rcond = 1.f / ainvnm / *anorm; } L20: return 0; /* End of CPPCON */ } /* cppcon_ */