/* clatzm.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static complex c_b1 = {1.f,0.f}; static integer c__1 = 1; /* Subroutine */ int clatzm_(char *side, integer *m, integer *n, complex *v, integer *incv, complex *tau, complex *c1, complex *c2, integer *ldc, complex *work) { /* System generated locals */ integer c1_dim1, c1_offset, c2_dim1, c2_offset, i__1; complex q__1; /* Local variables */ extern /* Subroutine */ int cgerc_(integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, integer *), cgemv_(char *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, complex *, integer *); extern logical lsame_(char *, char *); extern /* Subroutine */ int cgeru_(integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, integer *), ccopy_(integer *, complex *, integer *, complex *, integer *), caxpy_(integer *, complex *, complex *, integer *, complex *, integer *), clacgv_(integer *, complex *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* This routine is deprecated and has been replaced by routine CUNMRZ. */ /* CLATZM applies a Householder matrix generated by CTZRQF to a matrix. */ /* Let P = I - tau*u*u', u = ( 1 ), */ /* ( v ) */ /* where v is an (m-1) vector if SIDE = 'L', or a (n-1) vector if */ /* SIDE = 'R'. */ /* If SIDE equals 'L', let */ /* C = [ C1 ] 1 */ /* [ C2 ] m-1 */ /* n */ /* Then C is overwritten by P*C. */ /* If SIDE equals 'R', let */ /* C = [ C1, C2 ] m */ /* 1 n-1 */ /* Then C is overwritten by C*P. */ /* Arguments */ /* ========= */ /* SIDE (input) CHARACTER*1 */ /* = 'L': form P * C */ /* = 'R': form C * P */ /* M (input) INTEGER */ /* The number of rows of the matrix C. */ /* N (input) INTEGER */ /* The number of columns of the matrix C. */ /* V (input) COMPLEX array, dimension */ /* (1 + (M-1)*abs(INCV)) if SIDE = 'L' */ /* (1 + (N-1)*abs(INCV)) if SIDE = 'R' */ /* The vector v in the representation of P. V is not used */ /* if TAU = 0. */ /* INCV (input) INTEGER */ /* The increment between elements of v. INCV <> 0 */ /* TAU (input) COMPLEX */ /* The value tau in the representation of P. */ /* C1 (input/output) COMPLEX array, dimension */ /* (LDC,N) if SIDE = 'L' */ /* (M,1) if SIDE = 'R' */ /* On entry, the n-vector C1 if SIDE = 'L', or the m-vector C1 */ /* if SIDE = 'R'. */ /* On exit, the first row of P*C if SIDE = 'L', or the first */ /* column of C*P if SIDE = 'R'. */ /* C2 (input/output) COMPLEX array, dimension */ /* (LDC, N) if SIDE = 'L' */ /* (LDC, N-1) if SIDE = 'R' */ /* On entry, the (m - 1) x n matrix C2 if SIDE = 'L', or the */ /* m x (n - 1) matrix C2 if SIDE = 'R'. */ /* On exit, rows 2:m of P*C if SIDE = 'L', or columns 2:m of C*P */ /* if SIDE = 'R'. */ /* LDC (input) INTEGER */ /* The leading dimension of the arrays C1 and C2. */ /* LDC >= max(1,M). */ /* WORK (workspace) COMPLEX array, dimension */ /* (N) if SIDE = 'L' */ /* (M) if SIDE = 'R' */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --v; c2_dim1 = *ldc; c2_offset = 1 + c2_dim1; c2 -= c2_offset; c1_dim1 = *ldc; c1_offset = 1 + c1_dim1; c1 -= c1_offset; --work; /* Function Body */ if (min(*m,*n) == 0 || tau->r == 0.f && tau->i == 0.f) { return 0; } if (lsame_(side, "L")) { /* w := conjg( C1 + v' * C2 ) */ ccopy_(n, &c1[c1_offset], ldc, &work[1], &c__1); clacgv_(n, &work[1], &c__1); i__1 = *m - 1; cgemv_("Conjugate transpose", &i__1, n, &c_b1, &c2[c2_offset], ldc, & v[1], incv, &c_b1, &work[1], &c__1); /* [ C1 ] := [ C1 ] - tau* [ 1 ] * w' */ /* [ C2 ] [ C2 ] [ v ] */ clacgv_(n, &work[1], &c__1); q__1.r = -tau->r, q__1.i = -tau->i; caxpy_(n, &q__1, &work[1], &c__1, &c1[c1_offset], ldc); i__1 = *m - 1; q__1.r = -tau->r, q__1.i = -tau->i; cgeru_(&i__1, n, &q__1, &v[1], incv, &work[1], &c__1, &c2[c2_offset], ldc); } else if (lsame_(side, "R")) { /* w := C1 + C2 * v */ ccopy_(m, &c1[c1_offset], &c__1, &work[1], &c__1); i__1 = *n - 1; cgemv_("No transpose", m, &i__1, &c_b1, &c2[c2_offset], ldc, &v[1], incv, &c_b1, &work[1], &c__1); /* [ C1, C2 ] := [ C1, C2 ] - tau* w * [ 1 , v'] */ q__1.r = -tau->r, q__1.i = -tau->i; caxpy_(m, &q__1, &work[1], &c__1, &c1[c1_offset], &c__1); i__1 = *n - 1; q__1.r = -tau->r, q__1.i = -tau->i; cgerc_(m, &i__1, &q__1, &work[1], &c__1, &v[1], incv, &c2[c2_offset], ldc); } return 0; /* End of CLATZM */ } /* clatzm_ */