/* claqhb.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Subroutine */ int claqhb_(char *uplo, integer *n, integer *kd, complex *ab, integer *ldab, real *s, real *scond, real *amax, char *equed) { /* System generated locals */ integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4; real r__1; complex q__1; /* Local variables */ integer i__, j; real cj, large; extern logical lsame_(char *, char *); real small; extern doublereal slamch_(char *); /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CLAQHB equilibrates an Hermitian band matrix A using the scaling */ /* factors in the vector S. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the upper or lower triangular part of the */ /* symmetric matrix A is stored. */ /* = 'U': Upper triangular */ /* = 'L': Lower triangular */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* KD (input) INTEGER */ /* The number of super-diagonals of the matrix A if UPLO = 'U', */ /* or the number of sub-diagonals if UPLO = 'L'. KD >= 0. */ /* AB (input/output) COMPLEX array, dimension (LDAB,N) */ /* On entry, the upper or lower triangle of the symmetric band */ /* matrix A, stored in the first KD+1 rows of the array. The */ /* j-th column of A is stored in the j-th column of the array AB */ /* as follows: */ /* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */ /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */ /* On exit, if INFO = 0, the triangular factor U or L from the */ /* Cholesky factorization A = U'*U or A = L*L' of the band */ /* matrix A, in the same storage format as A. */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= KD+1. */ /* S (output) REAL array, dimension (N) */ /* The scale factors for A. */ /* SCOND (input) REAL */ /* Ratio of the smallest S(i) to the largest S(i). */ /* AMAX (input) REAL */ /* Absolute value of largest matrix entry. */ /* EQUED (output) CHARACTER*1 */ /* Specifies whether or not equilibration was done. */ /* = 'N': No equilibration. */ /* = 'Y': Equilibration was done, i.e., A has been replaced by */ /* diag(S) * A * diag(S). */ /* Internal Parameters */ /* =================== */ /* THRESH is a threshold value used to decide if scaling should be done */ /* based on the ratio of the scaling factors. If SCOND < THRESH, */ /* scaling is done. */ /* LARGE and SMALL are threshold values used to decide if scaling should */ /* be done based on the absolute size of the largest matrix element. */ /* If AMAX > LARGE or AMAX < SMALL, scaling is done. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick return if possible */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; --s; /* Function Body */ if (*n <= 0) { *(unsigned char *)equed = 'N'; return 0; } /* Initialize LARGE and SMALL. */ small = slamch_("Safe minimum") / slamch_("Precision"); large = 1.f / small; if (*scond >= .1f && *amax >= small && *amax <= large) { /* No equilibration */ *(unsigned char *)equed = 'N'; } else { /* Replace A by diag(S) * A * diag(S). */ if (lsame_(uplo, "U")) { /* Upper triangle of A is stored in band format. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { cj = s[j]; /* Computing MAX */ i__2 = 1, i__3 = j - *kd; i__4 = j - 1; for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) { i__2 = *kd + 1 + i__ - j + j * ab_dim1; r__1 = cj * s[i__]; i__3 = *kd + 1 + i__ - j + j * ab_dim1; q__1.r = r__1 * ab[i__3].r, q__1.i = r__1 * ab[i__3].i; ab[i__2].r = q__1.r, ab[i__2].i = q__1.i; /* L10: */ } i__4 = *kd + 1 + j * ab_dim1; i__2 = *kd + 1 + j * ab_dim1; r__1 = cj * cj * ab[i__2].r; ab[i__4].r = r__1, ab[i__4].i = 0.f; /* L20: */ } } else { /* Lower triangle of A is stored. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { cj = s[j]; i__4 = j * ab_dim1 + 1; i__2 = j * ab_dim1 + 1; r__1 = cj * cj * ab[i__2].r; ab[i__4].r = r__1, ab[i__4].i = 0.f; /* Computing MIN */ i__2 = *n, i__3 = j + *kd; i__4 = min(i__2,i__3); for (i__ = j + 1; i__ <= i__4; ++i__) { i__2 = i__ + 1 - j + j * ab_dim1; r__1 = cj * s[i__]; i__3 = i__ + 1 - j + j * ab_dim1; q__1.r = r__1 * ab[i__3].r, q__1.i = r__1 * ab[i__3].i; ab[i__2].r = q__1.r, ab[i__2].i = q__1.i; /* L30: */ } /* L40: */ } } *(unsigned char *)equed = 'Y'; } return 0; /* End of CLAQHB */ } /* claqhb_ */