/* chpevd.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int chpevd_(char *jobz, char *uplo, integer *n, complex *ap, real *w, complex *z__, integer *ldz, complex *work, integer *lwork, real *rwork, integer *lrwork, integer *iwork, integer *liwork, integer *info) { /* System generated locals */ integer z_dim1, z_offset, i__1; real r__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ real eps; integer inde; real anrm; integer imax; real rmin, rmax, sigma; extern logical lsame_(char *, char *); integer iinfo; extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *); integer lwmin, llrwk, llwrk; logical wantz; integer iscale; extern doublereal clanhp_(char *, char *, integer *, complex *, real *); extern /* Subroutine */ int cstedc_(char *, integer *, real *, real *, complex *, integer *, complex *, integer *, real *, integer *, integer *, integer *, integer *); extern doublereal slamch_(char *); extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer *); real safmin; extern /* Subroutine */ int xerbla_(char *, integer *); real bignum; integer indtau; extern /* Subroutine */ int chptrd_(char *, integer *, complex *, real *, real *, complex *, integer *); integer indrwk, indwrk, liwmin; extern /* Subroutine */ int ssterf_(integer *, real *, real *, integer *); integer lrwmin; extern /* Subroutine */ int cupmtr_(char *, char *, char *, integer *, integer *, complex *, complex *, complex *, integer *, complex *, integer *); real smlnum; logical lquery; /* -- LAPACK driver routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CHPEVD computes all the eigenvalues and, optionally, eigenvectors of */ /* a complex Hermitian matrix A in packed storage. If eigenvectors are */ /* desired, it uses a divide and conquer algorithm. */ /* The divide and conquer algorithm makes very mild assumptions about */ /* floating point arithmetic. It will work on machines with a guard */ /* digit in add/subtract, or on those binary machines without guard */ /* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */ /* Cray-2. It could conceivably fail on hexadecimal or decimal machines */ /* without guard digits, but we know of none. */ /* Arguments */ /* ========= */ /* JOBZ (input) CHARACTER*1 */ /* = 'N': Compute eigenvalues only; */ /* = 'V': Compute eigenvalues and eigenvectors. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored; */ /* = 'L': Lower triangle of A is stored. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* AP (input/output) COMPLEX array, dimension (N*(N+1)/2) */ /* On entry, the upper or lower triangle of the Hermitian matrix */ /* A, packed columnwise in a linear array. The j-th column of A */ /* is stored in the array AP as follows: */ /* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */ /* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */ /* On exit, AP is overwritten by values generated during the */ /* reduction to tridiagonal form. If UPLO = 'U', the diagonal */ /* and first superdiagonal of the tridiagonal matrix T overwrite */ /* the corresponding elements of A, and if UPLO = 'L', the */ /* diagonal and first subdiagonal of T overwrite the */ /* corresponding elements of A. */ /* W (output) REAL array, dimension (N) */ /* If INFO = 0, the eigenvalues in ascending order. */ /* Z (output) COMPLEX array, dimension (LDZ, N) */ /* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */ /* eigenvectors of the matrix A, with the i-th column of Z */ /* holding the eigenvector associated with W(i). */ /* If JOBZ = 'N', then Z is not referenced. */ /* LDZ (input) INTEGER */ /* The leading dimension of the array Z. LDZ >= 1, and if */ /* JOBZ = 'V', LDZ >= max(1,N). */ /* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the required LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of array WORK. */ /* If N <= 1, LWORK must be at least 1. */ /* If JOBZ = 'N' and N > 1, LWORK must be at least N. */ /* If JOBZ = 'V' and N > 1, LWORK must be at least 2*N. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the required sizes of the WORK, RWORK and */ /* IWORK arrays, returns these values as the first entries of */ /* the WORK, RWORK and IWORK arrays, and no error message */ /* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */ /* RWORK (workspace/output) REAL array, dimension (MAX(1,LRWORK)) */ /* On exit, if INFO = 0, RWORK(1) returns the required LRWORK. */ /* LRWORK (input) INTEGER */ /* The dimension of array RWORK. */ /* If N <= 1, LRWORK must be at least 1. */ /* If JOBZ = 'N' and N > 1, LRWORK must be at least N. */ /* If JOBZ = 'V' and N > 1, LRWORK must be at least */ /* 1 + 5*N + 2*N**2. */ /* If LRWORK = -1, then a workspace query is assumed; the */ /* routine only calculates the required sizes of the WORK, RWORK */ /* and IWORK arrays, returns these values as the first entries */ /* of the WORK, RWORK and IWORK arrays, and no error message */ /* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */ /* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */ /* On exit, if INFO = 0, IWORK(1) returns the required LIWORK. */ /* LIWORK (input) INTEGER */ /* The dimension of array IWORK. */ /* If JOBZ = 'N' or N <= 1, LIWORK must be at least 1. */ /* If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. */ /* If LIWORK = -1, then a workspace query is assumed; the */ /* routine only calculates the required sizes of the WORK, RWORK */ /* and IWORK arrays, returns these values as the first entries */ /* of the WORK, RWORK and IWORK arrays, and no error message */ /* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > 0: if INFO = i, the algorithm failed to converge; i */ /* off-diagonal elements of an intermediate tridiagonal */ /* form did not converge to zero. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --ap; --w; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --work; --rwork; --iwork; /* Function Body */ wantz = lsame_(jobz, "V"); lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1; *info = 0; if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (! (lsame_(uplo, "L") || lsame_(uplo, "U"))) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*ldz < 1 || wantz && *ldz < *n) { *info = -7; } if (*info == 0) { if (*n <= 1) { lwmin = 1; liwmin = 1; lrwmin = 1; } else { if (wantz) { lwmin = *n << 1; /* Computing 2nd power */ i__1 = *n; lrwmin = *n * 5 + 1 + (i__1 * i__1 << 1); liwmin = *n * 5 + 3; } else { lwmin = *n; lrwmin = *n; liwmin = 1; } } work[1].r = (real) lwmin, work[1].i = 0.f; rwork[1] = (real) lrwmin; iwork[1] = liwmin; if (*lwork < lwmin && ! lquery) { *info = -9; } else if (*lrwork < lrwmin && ! lquery) { *info = -11; } else if (*liwork < liwmin && ! lquery) { *info = -13; } } if (*info != 0) { i__1 = -(*info); xerbla_("CHPEVD", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } if (*n == 1) { w[1] = ap[1].r; if (wantz) { i__1 = z_dim1 + 1; z__[i__1].r = 1.f, z__[i__1].i = 0.f; } return 0; } /* Get machine constants. */ safmin = slamch_("Safe minimum"); eps = slamch_("Precision"); smlnum = safmin / eps; bignum = 1.f / smlnum; rmin = sqrt(smlnum); rmax = sqrt(bignum); /* Scale matrix to allowable range, if necessary. */ anrm = clanhp_("M", uplo, n, &ap[1], &rwork[1]); iscale = 0; if (anrm > 0.f && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { i__1 = *n * (*n + 1) / 2; csscal_(&i__1, &sigma, &ap[1], &c__1); } /* Call CHPTRD to reduce Hermitian packed matrix to tridiagonal form. */ inde = 1; indtau = 1; indrwk = inde + *n; indwrk = indtau + *n; llwrk = *lwork - indwrk + 1; llrwk = *lrwork - indrwk + 1; chptrd_(uplo, n, &ap[1], &w[1], &rwork[inde], &work[indtau], &iinfo); /* For eigenvalues only, call SSTERF. For eigenvectors, first call */ /* CUPGTR to generate the orthogonal matrix, then call CSTEDC. */ if (! wantz) { ssterf_(n, &w[1], &rwork[inde], info); } else { cstedc_("I", n, &w[1], &rwork[inde], &z__[z_offset], ldz, &work[ indwrk], &llwrk, &rwork[indrwk], &llrwk, &iwork[1], liwork, info); cupmtr_("L", uplo, "N", n, n, &ap[1], &work[indtau], &z__[z_offset], ldz, &work[indwrk], &iinfo); } /* If matrix was scaled, then rescale eigenvalues appropriately. */ if (iscale == 1) { if (*info == 0) { imax = *n; } else { imax = *info - 1; } r__1 = 1.f / sigma; sscal_(&imax, &r__1, &w[1], &c__1); } work[1].r = (real) lwmin, work[1].i = 0.f; rwork[1] = (real) lrwmin; iwork[1] = liwmin; return 0; /* End of CHPEVD */ } /* chpevd_ */