/* chegs2.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static complex c_b1 = {1.f,0.f}; static integer c__1 = 1; /* Subroutine */ int chegs2_(integer *itype, char *uplo, integer *n, complex * a, integer *lda, complex *b, integer *ldb, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2; real r__1, r__2; complex q__1; /* Local variables */ integer k; complex ct; real akk, bkk; extern /* Subroutine */ int cher2_(char *, integer *, complex *, complex * , integer *, complex *, integer *, complex *, integer *); extern logical lsame_(char *, char *); extern /* Subroutine */ int caxpy_(integer *, complex *, complex *, integer *, complex *, integer *); logical upper; extern /* Subroutine */ int ctrmv_(char *, char *, char *, integer *, complex *, integer *, complex *, integer *), ctrsv_(char *, char *, char *, integer *, complex *, integer *, complex *, integer *), clacgv_( integer *, complex *, integer *), csscal_(integer *, real *, complex *, integer *), xerbla_(char *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CHEGS2 reduces a complex Hermitian-definite generalized */ /* eigenproblem to standard form. */ /* If ITYPE = 1, the problem is A*x = lambda*B*x, */ /* and A is overwritten by inv(U')*A*inv(U) or inv(L)*A*inv(L') */ /* If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or */ /* B*A*x = lambda*x, and A is overwritten by U*A*U` or L'*A*L. */ /* B must have been previously factorized as U'*U or L*L' by CPOTRF. */ /* Arguments */ /* ========= */ /* ITYPE (input) INTEGER */ /* = 1: compute inv(U')*A*inv(U) or inv(L)*A*inv(L'); */ /* = 2 or 3: compute U*A*U' or L'*A*L. */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the upper or lower triangular part of the */ /* Hermitian matrix A is stored, and how B has been factorized. */ /* = 'U': Upper triangular */ /* = 'L': Lower triangular */ /* N (input) INTEGER */ /* The order of the matrices A and B. N >= 0. */ /* A (input/output) COMPLEX array, dimension (LDA,N) */ /* On entry, the Hermitian matrix A. If UPLO = 'U', the leading */ /* n by n upper triangular part of A contains the upper */ /* triangular part of the matrix A, and the strictly lower */ /* triangular part of A is not referenced. If UPLO = 'L', the */ /* leading n by n lower triangular part of A contains the lower */ /* triangular part of the matrix A, and the strictly upper */ /* triangular part of A is not referenced. */ /* On exit, if INFO = 0, the transformed matrix, stored in the */ /* same format as A. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* B (input) COMPLEX array, dimension (LDB,N) */ /* The triangular factor from the Cholesky factorization of B, */ /* as returned by CPOTRF. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* INFO (output) INTEGER */ /* = 0: successful exit. */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (*itype < 1 || *itype > 3) { *info = -1; } else if (! upper && ! lsame_(uplo, "L")) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldb < max(1,*n)) { *info = -7; } if (*info != 0) { i__1 = -(*info); xerbla_("CHEGS2", &i__1); return 0; } if (*itype == 1) { if (upper) { /* Compute inv(U')*A*inv(U) */ i__1 = *n; for (k = 1; k <= i__1; ++k) { /* Update the upper triangle of A(k:n,k:n) */ i__2 = k + k * a_dim1; akk = a[i__2].r; i__2 = k + k * b_dim1; bkk = b[i__2].r; /* Computing 2nd power */ r__1 = bkk; akk /= r__1 * r__1; i__2 = k + k * a_dim1; a[i__2].r = akk, a[i__2].i = 0.f; if (k < *n) { i__2 = *n - k; r__1 = 1.f / bkk; csscal_(&i__2, &r__1, &a[k + (k + 1) * a_dim1], lda); r__1 = akk * -.5f; ct.r = r__1, ct.i = 0.f; i__2 = *n - k; clacgv_(&i__2, &a[k + (k + 1) * a_dim1], lda); i__2 = *n - k; clacgv_(&i__2, &b[k + (k + 1) * b_dim1], ldb); i__2 = *n - k; caxpy_(&i__2, &ct, &b[k + (k + 1) * b_dim1], ldb, &a[k + ( k + 1) * a_dim1], lda); i__2 = *n - k; q__1.r = -1.f, q__1.i = -0.f; cher2_(uplo, &i__2, &q__1, &a[k + (k + 1) * a_dim1], lda, &b[k + (k + 1) * b_dim1], ldb, &a[k + 1 + (k + 1) * a_dim1], lda); i__2 = *n - k; caxpy_(&i__2, &ct, &b[k + (k + 1) * b_dim1], ldb, &a[k + ( k + 1) * a_dim1], lda); i__2 = *n - k; clacgv_(&i__2, &b[k + (k + 1) * b_dim1], ldb); i__2 = *n - k; ctrsv_(uplo, "Conjugate transpose", "Non-unit", &i__2, &b[ k + 1 + (k + 1) * b_dim1], ldb, &a[k + (k + 1) * a_dim1], lda); i__2 = *n - k; clacgv_(&i__2, &a[k + (k + 1) * a_dim1], lda); } /* L10: */ } } else { /* Compute inv(L)*A*inv(L') */ i__1 = *n; for (k = 1; k <= i__1; ++k) { /* Update the lower triangle of A(k:n,k:n) */ i__2 = k + k * a_dim1; akk = a[i__2].r; i__2 = k + k * b_dim1; bkk = b[i__2].r; /* Computing 2nd power */ r__1 = bkk; akk /= r__1 * r__1; i__2 = k + k * a_dim1; a[i__2].r = akk, a[i__2].i = 0.f; if (k < *n) { i__2 = *n - k; r__1 = 1.f / bkk; csscal_(&i__2, &r__1, &a[k + 1 + k * a_dim1], &c__1); r__1 = akk * -.5f; ct.r = r__1, ct.i = 0.f; i__2 = *n - k; caxpy_(&i__2, &ct, &b[k + 1 + k * b_dim1], &c__1, &a[k + 1 + k * a_dim1], &c__1); i__2 = *n - k; q__1.r = -1.f, q__1.i = -0.f; cher2_(uplo, &i__2, &q__1, &a[k + 1 + k * a_dim1], &c__1, &b[k + 1 + k * b_dim1], &c__1, &a[k + 1 + (k + 1) * a_dim1], lda); i__2 = *n - k; caxpy_(&i__2, &ct, &b[k + 1 + k * b_dim1], &c__1, &a[k + 1 + k * a_dim1], &c__1); i__2 = *n - k; ctrsv_(uplo, "No transpose", "Non-unit", &i__2, &b[k + 1 + (k + 1) * b_dim1], ldb, &a[k + 1 + k * a_dim1], &c__1); } /* L20: */ } } } else { if (upper) { /* Compute U*A*U' */ i__1 = *n; for (k = 1; k <= i__1; ++k) { /* Update the upper triangle of A(1:k,1:k) */ i__2 = k + k * a_dim1; akk = a[i__2].r; i__2 = k + k * b_dim1; bkk = b[i__2].r; i__2 = k - 1; ctrmv_(uplo, "No transpose", "Non-unit", &i__2, &b[b_offset], ldb, &a[k * a_dim1 + 1], &c__1); r__1 = akk * .5f; ct.r = r__1, ct.i = 0.f; i__2 = k - 1; caxpy_(&i__2, &ct, &b[k * b_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &c__1); i__2 = k - 1; cher2_(uplo, &i__2, &c_b1, &a[k * a_dim1 + 1], &c__1, &b[k * b_dim1 + 1], &c__1, &a[a_offset], lda); i__2 = k - 1; caxpy_(&i__2, &ct, &b[k * b_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &c__1); i__2 = k - 1; csscal_(&i__2, &bkk, &a[k * a_dim1 + 1], &c__1); i__2 = k + k * a_dim1; /* Computing 2nd power */ r__2 = bkk; r__1 = akk * (r__2 * r__2); a[i__2].r = r__1, a[i__2].i = 0.f; /* L30: */ } } else { /* Compute L'*A*L */ i__1 = *n; for (k = 1; k <= i__1; ++k) { /* Update the lower triangle of A(1:k,1:k) */ i__2 = k + k * a_dim1; akk = a[i__2].r; i__2 = k + k * b_dim1; bkk = b[i__2].r; i__2 = k - 1; clacgv_(&i__2, &a[k + a_dim1], lda); i__2 = k - 1; ctrmv_(uplo, "Conjugate transpose", "Non-unit", &i__2, &b[ b_offset], ldb, &a[k + a_dim1], lda); r__1 = akk * .5f; ct.r = r__1, ct.i = 0.f; i__2 = k - 1; clacgv_(&i__2, &b[k + b_dim1], ldb); i__2 = k - 1; caxpy_(&i__2, &ct, &b[k + b_dim1], ldb, &a[k + a_dim1], lda); i__2 = k - 1; cher2_(uplo, &i__2, &c_b1, &a[k + a_dim1], lda, &b[k + b_dim1] , ldb, &a[a_offset], lda); i__2 = k - 1; caxpy_(&i__2, &ct, &b[k + b_dim1], ldb, &a[k + a_dim1], lda); i__2 = k - 1; clacgv_(&i__2, &b[k + b_dim1], ldb); i__2 = k - 1; csscal_(&i__2, &bkk, &a[k + a_dim1], lda); i__2 = k - 1; clacgv_(&i__2, &a[k + a_dim1], lda); i__2 = k + k * a_dim1; /* Computing 2nd power */ r__2 = bkk; r__1 = akk * (r__2 * r__2); a[i__2].r = r__1, a[i__2].i = 0.f; /* L40: */ } } } return 0; /* End of CHEGS2 */ } /* chegs2_ */