/* dgeqrf.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static integer c__3 = 3; static integer c__2 = 2; /* Subroutine */ int dgeqrf_(integer *m, integer *n, doublereal *a, integer * lda, doublereal *tau, doublereal *work, integer *lwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6; real r__1; /* Local variables */ integer i__, j, k, ib, nb, nt, nx, iws; extern doublereal sceil_(real *); integer nbmin, iinfo; extern /* Subroutine */ int dgeqr2_(integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *), dlarfb_(char *, char *, char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *), dlarft_(char *, char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); integer lbwork, llwork, lwkopt; logical lquery; /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* March 2008 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DGEQRF computes a QR factorization of a real M-by-N matrix A: */ /* A = Q * R. */ /* This is the left-looking Level 3 BLAS version of the algorithm. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= 0. */ /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ /* On entry, the M-by-N matrix A. */ /* On exit, the elements on and above the diagonal of the array */ /* contain the min(M,N)-by-N upper trapezoidal matrix R (R is */ /* upper triangular if m >= n); the elements below the diagonal, */ /* with the array TAU, represent the orthogonal matrix Q as a */ /* product of min(m,n) elementary reflectors (see Further */ /* Details). */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* TAU (output) DOUBLE PRECISION array, dimension (min(M,N)) */ /* The scalar factors of the elementary reflectors (see Further */ /* Details). */ /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. The dimension can be divided into three parts. */ /* 1) The part for the triangular factor T. If the very last T is not bigger */ /* than any of the rest, then this part is NB x ceiling(K/NB), otherwise, */ /* NB x (K-NT), where K = min(M,N) and NT is the dimension of the very last T */ /* 2) The part for the very last T when T is bigger than any of the rest T. */ /* The size of this part is NT x NT, where NT = K - ceiling ((K-NX)/NB) x NB, */ /* where K = min(M,N), NX is calculated by */ /* NX = MAX( 0, ILAENV( 3, 'DGEQRF', ' ', M, N, -1, -1 ) ) */ /* 3) The part for dlarfb is of size max((N-M)*K, (N-M)*NB, K*NB, NB*NB) */ /* So LWORK = part1 + part2 + part3 */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* Further Details */ /* =============== */ /* The matrix Q is represented as a product of elementary reflectors */ /* Q = H(1) H(2) . . . H(k), where k = min(m,n). */ /* Each H(i) has the form */ /* H(i) = I - tau * v * v' */ /* where tau is a real scalar, and v is a real vector with */ /* v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), */ /* and tau in TAU(i). */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ *info = 0; nbmin = 2; nx = 0; iws = *n; k = min(*m,*n); nb = ilaenv_(&c__1, "DGEQRF", " ", m, n, &c_n1, &c_n1); if (nb > 1 && nb < k) { /* Determine when to cross over from blocked to unblocked code. */ /* Computing MAX */ i__1 = 0, i__2 = ilaenv_(&c__3, "DGEQRF", " ", m, n, &c_n1, &c_n1); nx = max(i__1,i__2); } /* Get NT, the size of the very last T, which is the left-over from in-between K-NX and K to K, eg.: */ /* NB=3 2NB=6 K=10 */ /* | | | */ /* 1--2--3--4--5--6--7--8--9--10 */ /* | \________/ */ /* K-NX=5 NT=4 */ /* So here 4 x 4 is the last T stored in the workspace */ r__1 = (real) (k - nx) / (real) nb; nt = k - sceil_(&r__1) * nb; /* optimal workspace = space for dlarfb + space for normal T's + space for the last T */ /* Computing MAX */ /* Computing MAX */ i__3 = (*n - *m) * k, i__4 = (*n - *m) * nb; /* Computing MAX */ i__5 = k * nb, i__6 = nb * nb; i__1 = max(i__3,i__4), i__2 = max(i__5,i__6); llwork = max(i__1,i__2); r__1 = (real) llwork / (real) nb; llwork = sceil_(&r__1); if (nt > nb) { lbwork = k - nt; /* Optimal workspace for dlarfb = MAX(1,N)*NT */ lwkopt = (lbwork + llwork) * nb; work[1] = (doublereal) (lwkopt + nt * nt); } else { r__1 = (real) k / (real) nb; lbwork = sceil_(&r__1) * nb; lwkopt = (lbwork + llwork - nb) * nb; work[1] = (doublereal) lwkopt; } /* Test the input arguments */ lquery = *lwork == -1; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*m)) { *info = -4; } else if (*lwork < max(1,*n) && ! lquery) { *info = -7; } if (*info != 0) { i__1 = -(*info); xerbla_("DGEQRF", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (k == 0) { work[1] = 1.; return 0; } if (nb > 1 && nb < k) { if (nx < k) { /* Determine if workspace is large enough for blocked code. */ if (nt <= nb) { iws = (lbwork + llwork - nb) * nb; } else { iws = (lbwork + llwork) * nb + nt * nt; } if (*lwork < iws) { /* Not enough workspace to use optimal NB: reduce NB and */ /* determine the minimum value of NB. */ if (nt <= nb) { nb = *lwork / (llwork + (lbwork - nb)); } else { nb = (*lwork - nt * nt) / (lbwork + llwork); } /* Computing MAX */ i__1 = 2, i__2 = ilaenv_(&c__2, "DGEQRF", " ", m, n, &c_n1, & c_n1); nbmin = max(i__1,i__2); } } } if (nb >= nbmin && nb < k && nx < k) { /* Use blocked code initially */ i__1 = k - nx; i__2 = nb; for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) { /* Computing MIN */ i__3 = k - i__ + 1; ib = min(i__3,nb); /* Update the current column using old T's */ i__3 = i__ - nb; i__4 = nb; for (j = 1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) { /* Apply H' to A(J:M,I:I+IB-1) from the left */ i__5 = *m - j + 1; dlarfb_("Left", "Transpose", "Forward", "Columnwise", &i__5, & ib, &nb, &a[j + j * a_dim1], lda, &work[j], &lbwork, & a[j + i__ * a_dim1], lda, &work[lbwork * nb + nt * nt + 1], &ib); /* L20: */ } /* Compute the QR factorization of the current block */ /* A(I:M,I:I+IB-1) */ i__4 = *m - i__ + 1; dgeqr2_(&i__4, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[ lbwork * nb + nt * nt + 1], &iinfo); if (i__ + ib <= *n) { /* Form the triangular factor of the block reflector */ /* H = H(i) H(i+1) . . . H(i+ib-1) */ i__4 = *m - i__ + 1; dlarft_("Forward", "Columnwise", &i__4, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[i__], &lbwork); } /* L10: */ } } else { i__ = 1; } /* Use unblocked code to factor the last or only block. */ if (i__ <= k) { if (i__ != 1) { i__2 = i__ - nb; i__1 = nb; for (j = 1; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) { /* Apply H' to A(J:M,I:K) from the left */ i__4 = *m - j + 1; i__3 = k - i__ + 1; i__5 = k - i__ + 1; dlarfb_("Left", "Transpose", "Forward", "Columnwise", &i__4, & i__3, &nb, &a[j + j * a_dim1], lda, &work[j], &lbwork, &a[j + i__ * a_dim1], lda, &work[lbwork * nb + nt * nt + 1], &i__5); /* L30: */ } i__1 = *m - i__ + 1; i__2 = k - i__ + 1; dgeqr2_(&i__1, &i__2, &a[i__ + i__ * a_dim1], lda, &tau[i__], & work[lbwork * nb + nt * nt + 1], &iinfo); } else { /* Use unblocked code to factor the last or only block. */ i__1 = *m - i__ + 1; i__2 = *n - i__ + 1; dgeqr2_(&i__1, &i__2, &a[i__ + i__ * a_dim1], lda, &tau[i__], & work[1], &iinfo); } } /* Apply update to the column M+1:N when N > M */ if (*m < *n && i__ != 1) { /* Form the last triangular factor of the block reflector */ /* H = H(i) H(i+1) . . . H(i+ib-1) */ if (nt <= nb) { i__1 = *m - i__ + 1; i__2 = k - i__ + 1; dlarft_("Forward", "Columnwise", &i__1, &i__2, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[i__], &lbwork); } else { i__1 = *m - i__ + 1; i__2 = k - i__ + 1; dlarft_("Forward", "Columnwise", &i__1, &i__2, &a[i__ + i__ * a_dim1], lda, &tau[i__], &work[lbwork * nb + 1], &nt); } /* Apply H' to A(1:M,M+1:N) from the left */ i__1 = k - nx; i__2 = nb; for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) { /* Computing MIN */ i__4 = k - j + 1; ib = min(i__4,nb); i__4 = *m - j + 1; i__3 = *n - *m; i__5 = *n - *m; dlarfb_("Left", "Transpose", "Forward", "Columnwise", &i__4, & i__3, &ib, &a[j + j * a_dim1], lda, &work[j], &lbwork, &a[ j + (*m + 1) * a_dim1], lda, &work[lbwork * nb + nt * nt + 1], &i__5); /* L40: */ } if (nt <= nb) { i__2 = *m - j + 1; i__1 = *n - *m; i__4 = k - j + 1; i__3 = *n - *m; dlarfb_("Left", "Transpose", "Forward", "Columnwise", &i__2, & i__1, &i__4, &a[j + j * a_dim1], lda, &work[j], &lbwork, & a[j + (*m + 1) * a_dim1], lda, &work[lbwork * nb + nt * nt + 1], &i__3); } else { i__2 = *m - j + 1; i__1 = *n - *m; i__4 = k - j + 1; i__3 = *n - *m; dlarfb_("Left", "Transpose", "Forward", "Columnwise", &i__2, & i__1, &i__4, &a[j + j * a_dim1], lda, &work[lbwork * nb + 1], &nt, &a[j + (*m + 1) * a_dim1], lda, &work[lbwork * nb + nt * nt + 1], &i__3); } } work[1] = (doublereal) iws; return 0; /* End of DGEQRF */ } /* dgeqrf_ */