/* -- translated by f2c (version 19940927). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Subroutine */ int ztbmv_(char *uplo, char *trans, char *diag, integer *n, integer *k, doublecomplex *a, integer *lda, doublecomplex *x, integer *incx) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; doublecomplex z__1, z__2, z__3; /* Builtin functions */ void d_cnjg(doublecomplex *, doublecomplex *); /* Local variables */ static integer info; static doublecomplex temp; static integer i, j, l; extern logical lsame_(char *, char *); static integer kplus1, ix, jx, kx; extern /* Subroutine */ int xerbla_(char *, integer *); static logical noconj, nounit; /* Purpose ======= ZTBMV performs one of the matrix-vector operations x := A*x, or x := A'*x, or x := conjg( A' )*x, where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular band matrix, with ( k + 1 ) diagonals. Parameters ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' x := A*x. TRANS = 'T' or 't' x := A'*x. TRANS = 'C' or 'c' x := conjg( A' )*x. Unchanged on exit. DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. K - INTEGER. On entry with UPLO = 'U' or 'u', K specifies the number of super-diagonals of the matrix A. On entry with UPLO = 'L' or 'l', K specifies the number of sub-diagonals of the matrix A. K must satisfy 0 .le. K. Unchanged on exit. A - COMPLEX*16 array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) by n part of the array A must contain the upper triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row ( k + 1 ) of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array A is not referenced. The following program segment will transfer an upper triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = K + 1 - J DO 10, I = MAX( 1, J - K ), J A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) by n part of the array A must contain the lower triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array A is not referenced. The following program segment will transfer a lower triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = 1 - J DO 10, I = J, MIN( N, J + K ) A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Note that when DIAG = 'U' or 'u' the elements of the array A corresponding to the diagonal elements of the matrix are not referenced, but are assumed to be unity. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( k + 1 ). Unchanged on exit. X - COMPLEX*16 array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. On exit, X is overwritten with the tranformed vector x. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. Test the input parameters. Parameter adjustments Function Body */ #define X(I) x[(I)-1] #define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)] info = 0; if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { info = 1; } else if (! lsame_(trans, "N") && ! lsame_(trans, "T") && ! lsame_(trans, "C")) { info = 2; } else if (! lsame_(diag, "U") && ! lsame_(diag, "N")) { info = 3; } else if (*n < 0) { info = 4; } else if (*k < 0) { info = 5; } else if (*lda < *k + 1) { info = 7; } else if (*incx == 0) { info = 9; } if (info != 0) { xerbla_("ZTBMV ", &info); return 0; } /* Quick return if possible. */ if (*n == 0) { return 0; } noconj = lsame_(trans, "T"); nounit = lsame_(diag, "N"); /* Set up the start point in X if the increment is not unity. This will be ( N - 1 )*INCX too small for descending loops. */ if (*incx <= 0) { kx = 1 - (*n - 1) * *incx; } else if (*incx != 1) { kx = 1; } /* Start the operations. In this version the elements of A are accessed sequentially with one pass through A. */ if (lsame_(trans, "N")) { /* Form x := A*x. */ if (lsame_(uplo, "U")) { kplus1 = *k + 1; if (*incx == 1) { i__1 = *n; for (j = 1; j <= *n; ++j) { i__2 = j; if (X(j).r != 0. || X(j).i != 0.) { i__2 = j; temp.r = X(j).r, temp.i = X(j).i; l = kplus1 - j; /* Computing MAX */ i__2 = 1, i__3 = j - *k; i__4 = j - 1; for (i = max(1,j-*k); i <= j-1; ++i) { i__2 = i; i__3 = i; i__5 = l + i + j * a_dim1; z__2.r = temp.r * A(l+i,j).r - temp.i * A(l+i,j).i, z__2.i = temp.r * A(l+i,j).i + temp.i * A(l+i,j).r; z__1.r = X(i).r + z__2.r, z__1.i = X(i).i + z__2.i; X(i).r = z__1.r, X(i).i = z__1.i; /* L10: */ } if (nounit) { i__4 = j; i__2 = j; i__3 = kplus1 + j * a_dim1; z__1.r = X(j).r * A(kplus1,j).r - X(j).i * A(kplus1,j).i, z__1.i = X(j).r * A(kplus1,j).i + X(j).i * A(kplus1,j).r; X(j).r = z__1.r, X(j).i = z__1.i; } } /* L20: */ } } else { jx = kx; i__1 = *n; for (j = 1; j <= *n; ++j) { i__4 = jx; if (X(jx).r != 0. || X(jx).i != 0.) { i__4 = jx; temp.r = X(jx).r, temp.i = X(jx).i; ix = kx; l = kplus1 - j; /* Computing MAX */ i__4 = 1, i__2 = j - *k; i__3 = j - 1; for (i = max(1,j-*k); i <= j-1; ++i) { i__4 = ix; i__2 = ix; i__5 = l + i + j * a_dim1; z__2.r = temp.r * A(l+i,j).r - temp.i * A(l+i,j).i, z__2.i = temp.r * A(l+i,j).i + temp.i * A(l+i,j).r; z__1.r = X(ix).r + z__2.r, z__1.i = X(ix).i + z__2.i; X(ix).r = z__1.r, X(ix).i = z__1.i; ix += *incx; /* L30: */ } if (nounit) { i__3 = jx; i__4 = jx; i__2 = kplus1 + j * a_dim1; z__1.r = X(jx).r * A(kplus1,j).r - X(jx).i * A(kplus1,j).i, z__1.i = X(jx).r * A(kplus1,j).i + X(jx).i * A(kplus1,j).r; X(jx).r = z__1.r, X(jx).i = z__1.i; } } jx += *incx; if (j > *k) { kx += *incx; } /* L40: */ } } } else { if (*incx == 1) { for (j = *n; j >= 1; --j) { i__1 = j; if (X(j).r != 0. || X(j).i != 0.) { i__1 = j; temp.r = X(j).r, temp.i = X(j).i; l = 1 - j; /* Computing MIN */ i__1 = *n, i__3 = j + *k; i__4 = j + 1; for (i = min(*n,j+*k); i >= j+1; --i) { i__1 = i; i__3 = i; i__2 = l + i + j * a_dim1; z__2.r = temp.r * A(l+i,j).r - temp.i * A(l+i,j).i, z__2.i = temp.r * A(l+i,j).i + temp.i * A(l+i,j).r; z__1.r = X(i).r + z__2.r, z__1.i = X(i).i + z__2.i; X(i).r = z__1.r, X(i).i = z__1.i; /* L50: */ } if (nounit) { i__4 = j; i__1 = j; i__3 = j * a_dim1 + 1; z__1.r = X(j).r * A(1,j).r - X(j).i * A(1,j).i, z__1.i = X(j).r * A(1,j).i + X(j).i * A(1,j).r; X(j).r = z__1.r, X(j).i = z__1.i; } } /* L60: */ } } else { kx += (*n - 1) * *incx; jx = kx; for (j = *n; j >= 1; --j) { i__4 = jx; if (X(jx).r != 0. || X(jx).i != 0.) { i__4 = jx; temp.r = X(jx).r, temp.i = X(jx).i; ix = kx; l = 1 - j; /* Computing MIN */ i__4 = *n, i__1 = j + *k; i__3 = j + 1; for (i = min(*n,j+*k); i >= j+1; --i) { i__4 = ix; i__1 = ix; i__2 = l + i + j * a_dim1; z__2.r = temp.r * A(l+i,j).r - temp.i * A(l+i,j).i, z__2.i = temp.r * A(l+i,j).i + temp.i * A(l+i,j).r; z__1.r = X(ix).r + z__2.r, z__1.i = X(ix).i + z__2.i; X(ix).r = z__1.r, X(ix).i = z__1.i; ix -= *incx; /* L70: */ } if (nounit) { i__3 = jx; i__4 = jx; i__1 = j * a_dim1 + 1; z__1.r = X(jx).r * A(1,j).r - X(jx).i * A(1,j).i, z__1.i = X(jx).r * A(1,j).i + X(jx).i * A(1,j).r; X(jx).r = z__1.r, X(jx).i = z__1.i; } } jx -= *incx; if (*n - j >= *k) { kx -= *incx; } /* L80: */ } } } } else { /* Form x := A'*x or x := conjg( A' )*x. */ if (lsame_(uplo, "U")) { kplus1 = *k + 1; if (*incx == 1) { for (j = *n; j >= 1; --j) { i__3 = j; temp.r = X(j).r, temp.i = X(j).i; l = kplus1 - j; if (noconj) { if (nounit) { i__3 = kplus1 + j * a_dim1; z__1.r = temp.r * A(kplus1,j).r - temp.i * A(kplus1,j).i, z__1.i = temp.r * A(kplus1,j).i + temp.i * A(kplus1,j).r; temp.r = z__1.r, temp.i = z__1.i; } /* Computing MAX */ i__4 = 1, i__1 = j - *k; i__3 = max(i__4,i__1); for (i = j - 1; i >= max(1,j-*k); --i) { i__4 = l + i + j * a_dim1; i__1 = i; z__2.r = A(l+i,j).r * X(i).r - A(l+i,j).i * X( i).i, z__2.i = A(l+i,j).r * X(i).i + A(l+i,j).i * X(i).r; z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; temp.r = z__1.r, temp.i = z__1.i; /* L90: */ } } else { if (nounit) { d_cnjg(&z__2, &A(kplus1,j)); z__1.r = temp.r * z__2.r - temp.i * z__2.i, z__1.i = temp.r * z__2.i + temp.i * z__2.r; temp.r = z__1.r, temp.i = z__1.i; } /* Computing MAX */ i__4 = 1, i__1 = j - *k; i__3 = max(i__4,i__1); for (i = j - 1; i >= max(1,j-*k); --i) { d_cnjg(&z__3, &A(l+i,j)); i__4 = i; z__2.r = z__3.r * X(i).r - z__3.i * X(i).i, z__2.i = z__3.r * X(i).i + z__3.i * X( i).r; z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; temp.r = z__1.r, temp.i = z__1.i; /* L100: */ } } i__3 = j; X(j).r = temp.r, X(j).i = temp.i; /* L110: */ } } else { kx += (*n - 1) * *incx; jx = kx; for (j = *n; j >= 1; --j) { i__3 = jx; temp.r = X(jx).r, temp.i = X(jx).i; kx -= *incx; ix = kx; l = kplus1 - j; if (noconj) { if (nounit) { i__3 = kplus1 + j * a_dim1; z__1.r = temp.r * A(kplus1,j).r - temp.i * A(kplus1,j).i, z__1.i = temp.r * A(kplus1,j).i + temp.i * A(kplus1,j).r; temp.r = z__1.r, temp.i = z__1.i; } /* Computing MAX */ i__4 = 1, i__1 = j - *k; i__3 = max(i__4,i__1); for (i = j - 1; i >= max(1,j-*k); --i) { i__4 = l + i + j * a_dim1; i__1 = ix; z__2.r = A(l+i,j).r * X(ix).r - A(l+i,j).i * X( ix).i, z__2.i = A(l+i,j).r * X(ix).i + A(l+i,j).i * X(ix).r; z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; temp.r = z__1.r, temp.i = z__1.i; ix -= *incx; /* L120: */ } } else { if (nounit) { d_cnjg(&z__2, &A(kplus1,j)); z__1.r = temp.r * z__2.r - temp.i * z__2.i, z__1.i = temp.r * z__2.i + temp.i * z__2.r; temp.r = z__1.r, temp.i = z__1.i; } /* Computing MAX */ i__4 = 1, i__1 = j - *k; i__3 = max(i__4,i__1); for (i = j - 1; i >= max(1,j-*k); --i) { d_cnjg(&z__3, &A(l+i,j)); i__4 = ix; z__2.r = z__3.r * X(ix).r - z__3.i * X(ix).i, z__2.i = z__3.r * X(ix).i + z__3.i * X( ix).r; z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; temp.r = z__1.r, temp.i = z__1.i; ix -= *incx; /* L130: */ } } i__3 = jx; X(jx).r = temp.r, X(jx).i = temp.i; jx -= *incx; /* L140: */ } } } else { if (*incx == 1) { i__3 = *n; for (j = 1; j <= *n; ++j) { i__4 = j; temp.r = X(j).r, temp.i = X(j).i; l = 1 - j; if (noconj) { if (nounit) { i__4 = j * a_dim1 + 1; z__1.r = temp.r * A(1,j).r - temp.i * A(1,j).i, z__1.i = temp.r * A(1,j).i + temp.i * A(1,j).r; temp.r = z__1.r, temp.i = z__1.i; } /* Computing MIN */ i__1 = *n, i__2 = j + *k; i__4 = min(i__1,i__2); for (i = j + 1; i <= min(*n,j+*k); ++i) { i__1 = l + i + j * a_dim1; i__2 = i; z__2.r = A(l+i,j).r * X(i).r - A(l+i,j).i * X( i).i, z__2.i = A(l+i,j).r * X(i).i + A(l+i,j).i * X(i).r; z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; temp.r = z__1.r, temp.i = z__1.i; /* L150: */ } } else { if (nounit) { d_cnjg(&z__2, &A(1,j)); z__1.r = temp.r * z__2.r - temp.i * z__2.i, z__1.i = temp.r * z__2.i + temp.i * z__2.r; temp.r = z__1.r, temp.i = z__1.i; } /* Computing MIN */ i__1 = *n, i__2 = j + *k; i__4 = min(i__1,i__2); for (i = j + 1; i <= min(*n,j+*k); ++i) { d_cnjg(&z__3, &A(l+i,j)); i__1 = i; z__2.r = z__3.r * X(i).r - z__3.i * X(i).i, z__2.i = z__3.r * X(i).i + z__3.i * X( i).r; z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; temp.r = z__1.r, temp.i = z__1.i; /* L160: */ } } i__4 = j; X(j).r = temp.r, X(j).i = temp.i; /* L170: */ } } else { jx = kx; i__3 = *n; for (j = 1; j <= *n; ++j) { i__4 = jx; temp.r = X(jx).r, temp.i = X(jx).i; kx += *incx; ix = kx; l = 1 - j; if (noconj) { if (nounit) { i__4 = j * a_dim1 + 1; z__1.r = temp.r * A(1,j).r - temp.i * A(1,j).i, z__1.i = temp.r * A(1,j).i + temp.i * A(1,j).r; temp.r = z__1.r, temp.i = z__1.i; } /* Computing MIN */ i__1 = *n, i__2 = j + *k; i__4 = min(i__1,i__2); for (i = j + 1; i <= min(*n,j+*k); ++i) { i__1 = l + i + j * a_dim1; i__2 = ix; z__2.r = A(l+i,j).r * X(ix).r - A(l+i,j).i * X( ix).i, z__2.i = A(l+i,j).r * X(ix).i + A(l+i,j).i * X(ix).r; z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; temp.r = z__1.r, temp.i = z__1.i; ix += *incx; /* L180: */ } } else { if (nounit) { d_cnjg(&z__2, &A(1,j)); z__1.r = temp.r * z__2.r - temp.i * z__2.i, z__1.i = temp.r * z__2.i + temp.i * z__2.r; temp.r = z__1.r, temp.i = z__1.i; } /* Computing MIN */ i__1 = *n, i__2 = j + *k; i__4 = min(i__1,i__2); for (i = j + 1; i <= min(*n,j+*k); ++i) { d_cnjg(&z__3, &A(l+i,j)); i__1 = ix; z__2.r = z__3.r * X(ix).r - z__3.i * X(ix).i, z__2.i = z__3.r * X(ix).i + z__3.i * X( ix).r; z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i; temp.r = z__1.r, temp.i = z__1.i; ix += *incx; /* L190: */ } } i__4 = jx; X(jx).r = temp.r, X(jx).i = temp.i; jx += *incx; /* L200: */ } } } } return 0; /* End of ZTBMV . */ } /* ztbmv_ */