/* -- translated by f2c (version 19940927). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Subroutine */ int strsm_(char *side, char *uplo, char *transa, char *diag, integer *m, integer *n, real *alpha, real *a, integer *lda, real *b, integer *ldb) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3; /* Local variables */ static integer info; static real temp; static integer i, j, k; static logical lside; extern logical lsame_(char *, char *); static integer nrowa; static logical upper; extern /* Subroutine */ int xerbla_(char *, integer *); static logical nounit; /* Purpose ======= STRSM solves one of the matrix equations op( A )*X = alpha*B, or X*op( A ) = alpha*B, where alpha is a scalar, X and B are m by n matrices, A is a unit, or non-unit, upper or lower triangular matrix and op( A ) is one of op( A ) = A or op( A ) = A'. The matrix X is overwritten on B. Parameters ========== SIDE - CHARACTER*1. On entry, SIDE specifies whether op( A ) appears on the left or right of X as follows: SIDE = 'L' or 'l' op( A )*X = alpha*B. SIDE = 'R' or 'r' X*op( A ) = alpha*B. Unchanged on exit. UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix A is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. TRANSA - CHARACTER*1. On entry, TRANSA specifies the form of op( A ) to be used in the matrix multiplication as follows: TRANSA = 'N' or 'n' op( A ) = A. TRANSA = 'T' or 't' op( A ) = A'. TRANSA = 'C' or 'c' op( A ) = A'. Unchanged on exit. DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. M - INTEGER. On entry, M specifies the number of rows of B. M must be at least zero. Unchanged on exit. N - INTEGER. On entry, N specifies the number of columns of B. N must be at least zero. Unchanged on exit. ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. When alpha is zero then A is not referenced and B need not be set before entry. Unchanged on exit. A - REAL array of DIMENSION ( LDA, k ), where k is m when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. Before entry with UPLO = 'U' or 'u', the leading k by k upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading k by k lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE = 'L' or 'l' then LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' then LDA must be at least max( 1, n ). Unchanged on exit. B - REAL array of DIMENSION ( LDB, n ). Before entry, the leading m by n part of the array B must contain the right-hand side matrix B, and on exit is overwritten by the solution matrix X. LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. LDB must be at least max( 1, m ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. Test the input parameters. Parameter adjustments Function Body */ #define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)] #define B(I,J) b[(I)-1 + ((J)-1)* ( *ldb)] lside = lsame_(side, "L"); if (lside) { nrowa = *m; } else { nrowa = *n; } nounit = lsame_(diag, "N"); upper = lsame_(uplo, "U"); info = 0; if (! lside && ! lsame_(side, "R")) { info = 1; } else if (! upper && ! lsame_(uplo, "L")) { info = 2; } else if (! lsame_(transa, "N") && ! lsame_(transa, "T") && ! lsame_(transa, "C")) { info = 3; } else if (! lsame_(diag, "U") && ! lsame_(diag, "N")) { info = 4; } else if (*m < 0) { info = 5; } else if (*n < 0) { info = 6; } else if (*lda < max(1,nrowa)) { info = 9; } else if (*ldb < max(1,*m)) { info = 11; } if (info != 0) { xerbla_("STRSM ", &info); return 0; } /* Quick return if possible. */ if (*n == 0) { return 0; } /* And when alpha.eq.zero. */ if (*alpha == 0.f) { i__1 = *n; for (j = 1; j <= *n; ++j) { i__2 = *m; for (i = 1; i <= *m; ++i) { B(i,j) = 0.f; /* L10: */ } /* L20: */ } return 0; } /* Start the operations. */ if (lside) { if (lsame_(transa, "N")) { /* Form B := alpha*inv( A )*B. */ if (upper) { i__1 = *n; for (j = 1; j <= *n; ++j) { if (*alpha != 1.f) { i__2 = *m; for (i = 1; i <= *m; ++i) { B(i,j) = *alpha * B(i,j); /* L30: */ } } for (k = *m; k >= 1; --k) { if (B(k,j) != 0.f) { if (nounit) { B(k,j) /= A(k,k); } i__2 = k - 1; for (i = 1; i <= k-1; ++i) { B(i,j) -= B(k,j) * A(i,k); /* L40: */ } } /* L50: */ } /* L60: */ } } else { i__1 = *n; for (j = 1; j <= *n; ++j) { if (*alpha != 1.f) { i__2 = *m; for (i = 1; i <= *m; ++i) { B(i,j) = *alpha * B(i,j); /* L70: */ } } i__2 = *m; for (k = 1; k <= *m; ++k) { if (B(k,j) != 0.f) { if (nounit) { B(k,j) /= A(k,k); } i__3 = *m; for (i = k + 1; i <= *m; ++i) { B(i,j) -= B(k,j) * A(i,k); /* L80: */ } } /* L90: */ } /* L100: */ } } } else { /* Form B := alpha*inv( A' )*B. */ if (upper) { i__1 = *n; for (j = 1; j <= *n; ++j) { i__2 = *m; for (i = 1; i <= *m; ++i) { temp = *alpha * B(i,j); i__3 = i - 1; for (k = 1; k <= i-1; ++k) { temp -= A(k,i) * B(k,j); /* L110: */ } if (nounit) { temp /= A(i,i); } B(i,j) = temp; /* L120: */ } /* L130: */ } } else { i__1 = *n; for (j = 1; j <= *n; ++j) { for (i = *m; i >= 1; --i) { temp = *alpha * B(i,j); i__2 = *m; for (k = i + 1; k <= *m; ++k) { temp -= A(k,i) * B(k,j); /* L140: */ } if (nounit) { temp /= A(i,i); } B(i,j) = temp; /* L150: */ } /* L160: */ } } } } else { if (lsame_(transa, "N")) { /* Form B := alpha*B*inv( A ). */ if (upper) { i__1 = *n; for (j = 1; j <= *n; ++j) { if (*alpha != 1.f) { i__2 = *m; for (i = 1; i <= *m; ++i) { B(i,j) = *alpha * B(i,j); /* L170: */ } } i__2 = j - 1; for (k = 1; k <= j-1; ++k) { if (A(k,j) != 0.f) { i__3 = *m; for (i = 1; i <= *m; ++i) { B(i,j) -= A(k,j) * B(i,k); /* L180: */ } } /* L190: */ } if (nounit) { temp = 1.f / A(j,j); i__2 = *m; for (i = 1; i <= *m; ++i) { B(i,j) = temp * B(i,j); /* L200: */ } } /* L210: */ } } else { for (j = *n; j >= 1; --j) { if (*alpha != 1.f) { i__1 = *m; for (i = 1; i <= *m; ++i) { B(i,j) = *alpha * B(i,j); /* L220: */ } } i__1 = *n; for (k = j + 1; k <= *n; ++k) { if (A(k,j) != 0.f) { i__2 = *m; for (i = 1; i <= *m; ++i) { B(i,j) -= A(k,j) * B(i,k); /* L230: */ } } /* L240: */ } if (nounit) { temp = 1.f / A(j,j); i__1 = *m; for (i = 1; i <= *m; ++i) { B(i,j) = temp * B(i,j); /* L250: */ } } /* L260: */ } } } else { /* Form B := alpha*B*inv( A' ). */ if (upper) { for (k = *n; k >= 1; --k) { if (nounit) { temp = 1.f / A(k,k); i__1 = *m; for (i = 1; i <= *m; ++i) { B(i,k) = temp * B(i,k); /* L270: */ } } i__1 = k - 1; for (j = 1; j <= k-1; ++j) { if (A(j,k) != 0.f) { temp = A(j,k); i__2 = *m; for (i = 1; i <= *m; ++i) { B(i,j) -= temp * B(i,k); /* L280: */ } } /* L290: */ } if (*alpha != 1.f) { i__1 = *m; for (i = 1; i <= *m; ++i) { B(i,k) = *alpha * B(i,k); /* L300: */ } } /* L310: */ } } else { i__1 = *n; for (k = 1; k <= *n; ++k) { if (nounit) { temp = 1.f / A(k,k); i__2 = *m; for (i = 1; i <= *m; ++i) { B(i,k) = temp * B(i,k); /* L320: */ } } i__2 = *n; for (j = k + 1; j <= *n; ++j) { if (A(j,k) != 0.f) { temp = A(j,k); i__3 = *m; for (i = 1; i <= *m; ++i) { B(i,j) -= temp * B(i,k); /* L330: */ } } /* L340: */ } if (*alpha != 1.f) { i__2 = *m; for (i = 1; i <= *m; ++i) { B(i,k) = *alpha * B(i,k); /* L350: */ } } /* L360: */ } } } } return 0; /* End of STRSM . */ } /* strsm_ */