/* -- translated by f2c (version 19940927). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Subroutine */ int ssbmv_(char *uplo, integer *n, integer *k, real *alpha, real *a, integer *lda, real *x, integer *incx, real *beta, real *y, integer *incy) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4; /* Local variables */ static integer info; static real temp1, temp2; static integer i, j, l; extern logical lsame_(char *, char *); static integer kplus1, ix, iy, jx, jy, kx, ky; extern /* Subroutine */ int xerbla_(char *, integer *); /* Purpose ======= SSBMV performs the matrix-vector operation y := alpha*A*x + beta*y, where alpha and beta are scalars, x and y are n element vectors and A is an n by n symmetric band matrix, with k super-diagonals. Parameters ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the band matrix A is being supplied as follows: UPLO = 'U' or 'u' The upper triangular part of A is being supplied. UPLO = 'L' or 'l' The lower triangular part of A is being supplied. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. K - INTEGER. On entry, K specifies the number of super-diagonals of the matrix A. K must satisfy 0 .le. K. Unchanged on exit. ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. A - REAL array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) by n part of the array A must contain the upper triangular band part of the symmetric matrix, supplied column by column, with the leading diagonal of the matrix in row ( k + 1 ) of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array A is not referenced. The following program segment will transfer the upper triangular part of a symmetric band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = K + 1 - J DO 10, I = MAX( 1, J - K ), J A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) by n part of the array A must contain the lower triangular band part of the symmetric matrix, supplied column by column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array A is not referenced. The following program segment will transfer the lower triangular part of a symmetric band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = 1 - J DO 10, I = J, MIN( N, J + K ) A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( k + 1 ). Unchanged on exit. X - REAL array of DIMENSION at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the vector x. Unchanged on exit. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. BETA - REAL . On entry, BETA specifies the scalar beta. Unchanged on exit. Y - REAL array of DIMENSION at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y. INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. Test the input parameters. Parameter adjustments Function Body */ #define X(I) x[(I)-1] #define Y(I) y[(I)-1] #define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)] info = 0; if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { info = 1; } else if (*n < 0) { info = 2; } else if (*k < 0) { info = 3; } else if (*lda < *k + 1) { info = 6; } else if (*incx == 0) { info = 8; } else if (*incy == 0) { info = 11; } if (info != 0) { xerbla_("SSBMV ", &info); return 0; } /* Quick return if possible. */ if (*n == 0 || *alpha == 0.f && *beta == 1.f) { return 0; } /* Set up the start points in X and Y. */ if (*incx > 0) { kx = 1; } else { kx = 1 - (*n - 1) * *incx; } if (*incy > 0) { ky = 1; } else { ky = 1 - (*n - 1) * *incy; } /* Start the operations. In this version the elements of the array A are accessed sequentially with one pass through A. First form y := beta*y. */ if (*beta != 1.f) { if (*incy == 1) { if (*beta == 0.f) { i__1 = *n; for (i = 1; i <= *n; ++i) { Y(i) = 0.f; /* L10: */ } } else { i__1 = *n; for (i = 1; i <= *n; ++i) { Y(i) = *beta * Y(i); /* L20: */ } } } else { iy = ky; if (*beta == 0.f) { i__1 = *n; for (i = 1; i <= *n; ++i) { Y(iy) = 0.f; iy += *incy; /* L30: */ } } else { i__1 = *n; for (i = 1; i <= *n; ++i) { Y(iy) = *beta * Y(iy); iy += *incy; /* L40: */ } } } } if (*alpha == 0.f) { return 0; } if (lsame_(uplo, "U")) { /* Form y when upper triangle of A is stored. */ kplus1 = *k + 1; if (*incx == 1 && *incy == 1) { i__1 = *n; for (j = 1; j <= *n; ++j) { temp1 = *alpha * X(j); temp2 = 0.f; l = kplus1 - j; /* Computing MAX */ i__2 = 1, i__3 = j - *k; i__4 = j - 1; for (i = max(1,j-*k); i <= j-1; ++i) { Y(i) += temp1 * A(l+i,j); temp2 += A(l+i,j) * X(i); /* L50: */ } Y(j) = Y(j) + temp1 * A(kplus1,j) + *alpha * temp2; /* L60: */ } } else { jx = kx; jy = ky; i__1 = *n; for (j = 1; j <= *n; ++j) { temp1 = *alpha * X(jx); temp2 = 0.f; ix = kx; iy = ky; l = kplus1 - j; /* Computing MAX */ i__4 = 1, i__2 = j - *k; i__3 = j - 1; for (i = max(1,j-*k); i <= j-1; ++i) { Y(iy) += temp1 * A(l+i,j); temp2 += A(l+i,j) * X(ix); ix += *incx; iy += *incy; /* L70: */ } Y(jy) = Y(jy) + temp1 * A(kplus1,j) + *alpha * temp2; jx += *incx; jy += *incy; if (j > *k) { kx += *incx; ky += *incy; } /* L80: */ } } } else { /* Form y when lower triangle of A is stored. */ if (*incx == 1 && *incy == 1) { i__1 = *n; for (j = 1; j <= *n; ++j) { temp1 = *alpha * X(j); temp2 = 0.f; Y(j) += temp1 * A(1,j); l = 1 - j; /* Computing MIN */ i__4 = *n, i__2 = j + *k; i__3 = min(i__4,i__2); for (i = j + 1; i <= min(*n,j+*k); ++i) { Y(i) += temp1 * A(l+i,j); temp2 += A(l+i,j) * X(i); /* L90: */ } Y(j) += *alpha * temp2; /* L100: */ } } else { jx = kx; jy = ky; i__1 = *n; for (j = 1; j <= *n; ++j) { temp1 = *alpha * X(jx); temp2 = 0.f; Y(jy) += temp1 * A(1,j); l = 1 - j; ix = jx; iy = jy; /* Computing MIN */ i__4 = *n, i__2 = j + *k; i__3 = min(i__4,i__2); for (i = j + 1; i <= min(*n,j+*k); ++i) { ix += *incx; iy += *incy; Y(iy) += temp1 * A(l+i,j); temp2 += A(l+i,j) * X(ix); /* L110: */ } Y(jy) += *alpha * temp2; jx += *incx; jy += *incy; /* L120: */ } } } return 0; /* End of SSBMV . */ } /* ssbmv_ */