/* -- translated by f2c (version 19940927). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Subroutine */ int dtbsv_(char *uplo, char *trans, char *diag, integer *n, integer *k, doublereal *a, integer *lda, doublereal *x, integer *incx) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4; /* Local variables */ static integer info; static doublereal temp; static integer i, j, l; extern logical lsame_(char *, char *); static integer kplus1, ix, jx, kx; extern /* Subroutine */ int xerbla_(char *, integer *); static logical nounit; /* Purpose ======= DTBSV solves one of the systems of equations A*x = b, or A'*x = b, where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular band matrix, with ( k + 1 ) diagonals. No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine. Parameters ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. TRANS - CHARACTER*1. On entry, TRANS specifies the equations to be solved as follows: TRANS = 'N' or 'n' A*x = b. TRANS = 'T' or 't' A'*x = b. TRANS = 'C' or 'c' A'*x = b. Unchanged on exit. DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. K - INTEGER. On entry with UPLO = 'U' or 'u', K specifies the number of super-diagonals of the matrix A. On entry with UPLO = 'L' or 'l', K specifies the number of sub-diagonals of the matrix A. K must satisfy 0 .le. K. Unchanged on exit. A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) by n part of the array A must contain the upper triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row ( k + 1 ) of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array A is not referenced. The following program segment will transfer an upper triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = K + 1 - J DO 10, I = MAX( 1, J - K ), J A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) by n part of the array A must contain the lower triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array A is not referenced. The following program segment will transfer a lower triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = 1 - J DO 10, I = J, MIN( N, J + K ) A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Note that when DIAG = 'U' or 'u' the elements of the array A corresponding to the diagonal elements of the matrix are not referenced, but are assumed to be unity. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( k + 1 ). Unchanged on exit. X - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element right-hand side vector b. On exit, X is overwritten with the solution vector x. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. Test the input parameters. Parameter adjustments Function Body */ #define X(I) x[(I)-1] #define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)] info = 0; if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { info = 1; } else if (! lsame_(trans, "N") && ! lsame_(trans, "T") && ! lsame_(trans, "C")) { info = 2; } else if (! lsame_(diag, "U") && ! lsame_(diag, "N")) { info = 3; } else if (*n < 0) { info = 4; } else if (*k < 0) { info = 5; } else if (*lda < *k + 1) { info = 7; } else if (*incx == 0) { info = 9; } if (info != 0) { xerbla_("DTBSV ", &info); return 0; } /* Quick return if possible. */ if (*n == 0) { return 0; } nounit = lsame_(diag, "N"); /* Set up the start point in X if the increment is not unity. This will be ( N - 1 )*INCX too small for descending loops. */ if (*incx <= 0) { kx = 1 - (*n - 1) * *incx; } else if (*incx != 1) { kx = 1; } /* Start the operations. In this version the elements of A are accessed by sequentially with one pass through A. */ if (lsame_(trans, "N")) { /* Form x := inv( A )*x. */ if (lsame_(uplo, "U")) { kplus1 = *k + 1; if (*incx == 1) { for (j = *n; j >= 1; --j) { if (X(j) != 0.) { l = kplus1 - j; if (nounit) { X(j) /= A(kplus1,j); } temp = X(j); /* Computing MAX */ i__2 = 1, i__3 = j - *k; i__1 = max(i__2,i__3); for (i = j - 1; i >= max(1,j-*k); --i) { X(i) -= temp * A(l+i,j); /* L10: */ } } /* L20: */ } } else { kx += (*n - 1) * *incx; jx = kx; for (j = *n; j >= 1; --j) { kx -= *incx; if (X(jx) != 0.) { ix = kx; l = kplus1 - j; if (nounit) { X(jx) /= A(kplus1,j); } temp = X(jx); /* Computing MAX */ i__2 = 1, i__3 = j - *k; i__1 = max(i__2,i__3); for (i = j - 1; i >= max(1,j-*k); --i) { X(ix) -= temp * A(l+i,j); ix -= *incx; /* L30: */ } } jx -= *incx; /* L40: */ } } } else { if (*incx == 1) { i__1 = *n; for (j = 1; j <= *n; ++j) { if (X(j) != 0.) { l = 1 - j; if (nounit) { X(j) /= A(1,j); } temp = X(j); /* Computing MIN */ i__3 = *n, i__4 = j + *k; i__2 = min(i__3,i__4); for (i = j + 1; i <= min(*n,j+*k); ++i) { X(i) -= temp * A(l+i,j); /* L50: */ } } /* L60: */ } } else { jx = kx; i__1 = *n; for (j = 1; j <= *n; ++j) { kx += *incx; if (X(jx) != 0.) { ix = kx; l = 1 - j; if (nounit) { X(jx) /= A(1,j); } temp = X(jx); /* Computing MIN */ i__3 = *n, i__4 = j + *k; i__2 = min(i__3,i__4); for (i = j + 1; i <= min(*n,j+*k); ++i) { X(ix) -= temp * A(l+i,j); ix += *incx; /* L70: */ } } jx += *incx; /* L80: */ } } } } else { /* Form x := inv( A')*x. */ if (lsame_(uplo, "U")) { kplus1 = *k + 1; if (*incx == 1) { i__1 = *n; for (j = 1; j <= *n; ++j) { temp = X(j); l = kplus1 - j; /* Computing MAX */ i__2 = 1, i__3 = j - *k; i__4 = j - 1; for (i = max(1,j-*k); i <= j-1; ++i) { temp -= A(l+i,j) * X(i); /* L90: */ } if (nounit) { temp /= A(kplus1,j); } X(j) = temp; /* L100: */ } } else { jx = kx; i__1 = *n; for (j = 1; j <= *n; ++j) { temp = X(jx); ix = kx; l = kplus1 - j; /* Computing MAX */ i__4 = 1, i__2 = j - *k; i__3 = j - 1; for (i = max(1,j-*k); i <= j-1; ++i) { temp -= A(l+i,j) * X(ix); ix += *incx; /* L110: */ } if (nounit) { temp /= A(kplus1,j); } X(jx) = temp; jx += *incx; if (j > *k) { kx += *incx; } /* L120: */ } } } else { if (*incx == 1) { for (j = *n; j >= 1; --j) { temp = X(j); l = 1 - j; /* Computing MIN */ i__1 = *n, i__3 = j + *k; i__4 = j + 1; for (i = min(*n,j+*k); i >= j+1; --i) { temp -= A(l+i,j) * X(i); /* L130: */ } if (nounit) { temp /= A(1,j); } X(j) = temp; /* L140: */ } } else { kx += (*n - 1) * *incx; jx = kx; for (j = *n; j >= 1; --j) { temp = X(jx); ix = kx; l = 1 - j; /* Computing MIN */ i__4 = *n, i__1 = j + *k; i__3 = j + 1; for (i = min(*n,j+*k); i >= j+1; --i) { temp -= A(l+i,j) * X(ix); ix -= *incx; /* L150: */ } if (nounit) { temp /= A(1,j); } X(jx) = temp; jx -= *incx; if (*n - j >= *k) { kx -= *incx; } /* L160: */ } } } } return 0; /* End of DTBSV . */ } /* dtbsv_ */