/* -- translated by f2c (version 19940927). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Subroutine */ int dsyr2k_(char *uplo, char *trans, integer *n, integer *k, doublereal *alpha, doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal *beta, doublereal *c, integer *ldc) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, i__3; /* Local variables */ static integer info; static doublereal temp1, temp2; static integer i, j, l; extern logical lsame_(char *, char *); static integer nrowa; static logical upper; extern /* Subroutine */ int xerbla_(char *, integer *); /* Purpose ======= DSYR2K performs one of the symmetric rank 2k operations C := alpha*A*B' + alpha*B*A' + beta*C, or C := alpha*A'*B + alpha*B'*A + beta*C, where alpha and beta are scalars, C is an n by n symmetric matrix and A and B are n by k matrices in the first case and k by n matrices in the second case. Parameters ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array C is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of C is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of C is to be referenced. Unchanged on exit. TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' C := alpha*A*B' + alpha*B*A' + beta*C. TRANS = 'T' or 't' C := alpha*A'*B + alpha*B'*A + beta*C. TRANS = 'C' or 'c' C := alpha*A'*B + alpha*B'*A + beta*C. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix C. N must be at least zero. Unchanged on exit. K - INTEGER. On entry with TRANS = 'N' or 'n', K specifies the number of columns of the matrices A and B, and on entry with TRANS = 'T' or 't' or 'C' or 'c', K specifies the number of rows of the matrices A and B. K must be at least zero. Unchanged on exit. ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is k when TRANS = 'N' or 'n', and is n otherwise. Before entry with TRANS = 'N' or 'n', the leading n by k part of the array A must contain the matrix A, otherwise the leading k by n part of the array A must contain the matrix A. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANS = 'N' or 'n' then LDA must be at least max( 1, n ), otherwise LDA must be at least max( 1, k ). Unchanged on exit. B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is k when TRANS = 'N' or 'n', and is n otherwise. Before entry with TRANS = 'N' or 'n', the leading n by k part of the array B must contain the matrix B, otherwise the leading k by n part of the array B must contain the matrix B. Unchanged on exit. LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. When TRANS = 'N' or 'n' then LDB must be at least max( 1, n ), otherwise LDB must be at least max( 1, k ). Unchanged on exit. BETA - DOUBLE PRECISION. On entry, BETA specifies the scalar beta. Unchanged on exit. C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array C must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of C is not referenced. On exit, the upper triangular part of the array C is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array C must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of C is not referenced. On exit, the lower triangular part of the array C is overwritten by the lower triangular part of the updated matrix. LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, n ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. Test the input parameters. Parameter adjustments Function Body */ #define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)] #define B(I,J) b[(I)-1 + ((J)-1)* ( *ldb)] #define C(I,J) c[(I)-1 + ((J)-1)* ( *ldc)] if (lsame_(trans, "N")) { nrowa = *n; } else { nrowa = *k; } upper = lsame_(uplo, "U"); info = 0; if (! upper && ! lsame_(uplo, "L")) { info = 1; } else if (! lsame_(trans, "N") && ! lsame_(trans, "T") && ! lsame_(trans, "C")) { info = 2; } else if (*n < 0) { info = 3; } else if (*k < 0) { info = 4; } else if (*lda < max(1,nrowa)) { info = 7; } else if (*ldb < max(1,nrowa)) { info = 9; } else if (*ldc < max(1,*n)) { info = 12; } if (info != 0) { xerbla_("DSYR2K", &info); return 0; } /* Quick return if possible. */ if (*n == 0 || (*alpha == 0. || *k == 0) && *beta == 1.) { return 0; } /* And when alpha.eq.zero. */ if (*alpha == 0.) { if (upper) { if (*beta == 0.) { i__1 = *n; for (j = 1; j <= *n; ++j) { i__2 = j; for (i = 1; i <= j; ++i) { C(i,j) = 0.; /* L10: */ } /* L20: */ } } else { i__1 = *n; for (j = 1; j <= *n; ++j) { i__2 = j; for (i = 1; i <= j; ++i) { C(i,j) = *beta * C(i,j); /* L30: */ } /* L40: */ } } } else { if (*beta == 0.) { i__1 = *n; for (j = 1; j <= *n; ++j) { i__2 = *n; for (i = j; i <= *n; ++i) { C(i,j) = 0.; /* L50: */ } /* L60: */ } } else { i__1 = *n; for (j = 1; j <= *n; ++j) { i__2 = *n; for (i = j; i <= *n; ++i) { C(i,j) = *beta * C(i,j); /* L70: */ } /* L80: */ } } } return 0; } /* Start the operations. */ if (lsame_(trans, "N")) { /* Form C := alpha*A*B' + alpha*B*A' + C. */ if (upper) { i__1 = *n; for (j = 1; j <= *n; ++j) { if (*beta == 0.) { i__2 = j; for (i = 1; i <= j; ++i) { C(i,j) = 0.; /* L90: */ } } else if (*beta != 1.) { i__2 = j; for (i = 1; i <= j; ++i) { C(i,j) = *beta * C(i,j); /* L100: */ } } i__2 = *k; for (l = 1; l <= *k; ++l) { if (A(j,l) != 0. || B(j,l) != 0.) { temp1 = *alpha * B(j,l); temp2 = *alpha * A(j,l); i__3 = j; for (i = 1; i <= j; ++i) { C(i,j) = C(i,j) + A(i,l) * temp1 + B(i,l) * temp2; /* L110: */ } } /* L120: */ } /* L130: */ } } else { i__1 = *n; for (j = 1; j <= *n; ++j) { if (*beta == 0.) { i__2 = *n; for (i = j; i <= *n; ++i) { C(i,j) = 0.; /* L140: */ } } else if (*beta != 1.) { i__2 = *n; for (i = j; i <= *n; ++i) { C(i,j) = *beta * C(i,j); /* L150: */ } } i__2 = *k; for (l = 1; l <= *k; ++l) { if (A(j,l) != 0. || B(j,l) != 0.) { temp1 = *alpha * B(j,l); temp2 = *alpha * A(j,l); i__3 = *n; for (i = j; i <= *n; ++i) { C(i,j) = C(i,j) + A(i,l) * temp1 + B(i,l) * temp2; /* L160: */ } } /* L170: */ } /* L180: */ } } } else { /* Form C := alpha*A'*B + alpha*B'*A + C. */ if (upper) { i__1 = *n; for (j = 1; j <= *n; ++j) { i__2 = j; for (i = 1; i <= j; ++i) { temp1 = 0.; temp2 = 0.; i__3 = *k; for (l = 1; l <= *k; ++l) { temp1 += A(l,i) * B(l,j); temp2 += B(l,i) * A(l,j); /* L190: */ } if (*beta == 0.) { C(i,j) = *alpha * temp1 + *alpha * temp2; } else { C(i,j) = *beta * C(i,j) + * alpha * temp1 + *alpha * temp2; } /* L200: */ } /* L210: */ } } else { i__1 = *n; for (j = 1; j <= *n; ++j) { i__2 = *n; for (i = j; i <= *n; ++i) { temp1 = 0.; temp2 = 0.; i__3 = *k; for (l = 1; l <= *k; ++l) { temp1 += A(l,i) * B(l,j); temp2 += B(l,i) * A(l,j); /* L220: */ } if (*beta == 0.) { C(i,j) = *alpha * temp1 + *alpha * temp2; } else { C(i,j) = *beta * C(i,j) + * alpha * temp1 + *alpha * temp2; } /* L230: */ } /* L240: */ } } } return 0; /* End of DSYR2K. */ } /* dsyr2k_ */