/* -- translated by f2c (version 19940927). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" /* Subroutine */ int dgemm_(char *transa, char *transb, integer *m, integer * n, integer *k, doublereal *alpha, doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal *beta, doublereal *c, integer *ldc) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, i__3; /* Local variables */ static integer info; static logical nota, notb; static doublereal temp; static integer i, j, l, ncola; extern logical lsame_(char *, char *); static integer nrowa, nrowb; extern /* Subroutine */ int xerbla_(char *, integer *); /* Purpose ======= DGEMM performs one of the matrix-matrix operations C := alpha*op( A )*op( B ) + beta*C, where op( X ) is one of op( X ) = X or op( X ) = X', alpha and beta are scalars, and A, B and C are matrices, with op( A ) an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. Parameters ========== TRANSA - CHARACTER*1. On entry, TRANSA specifies the form of op( A ) to be used in the matrix multiplication as follows: TRANSA = 'N' or 'n', op( A ) = A. TRANSA = 'T' or 't', op( A ) = A'. TRANSA = 'C' or 'c', op( A ) = A'. Unchanged on exit. TRANSB - CHARACTER*1. On entry, TRANSB specifies the form of op( B ) to be used in the matrix multiplication as follows: TRANSB = 'N' or 'n', op( B ) = B. TRANSB = 'T' or 't', op( B ) = B'. TRANSB = 'C' or 'c', op( B ) = B'. Unchanged on exit. M - INTEGER. On entry, M specifies the number of rows of the matrix op( A ) and of the matrix C. M must be at least zero. Unchanged on exit. N - INTEGER. On entry, N specifies the number of columns of the matrix op( B ) and the number of columns of the matrix C. N must be at least zero. Unchanged on exit. K - INTEGER. On entry, K specifies the number of columns of the matrix op( A ) and the number of rows of the matrix op( B ). K must be at least zero. Unchanged on exit. ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is k when TRANSA = 'N' or 'n', and is m otherwise. Before entry with TRANSA = 'N' or 'n', the leading m by k part of the array A must contain the matrix A, otherwise the leading k by m part of the array A must contain the matrix A. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANSA = 'N' or 'n' then LDA must be at least max( 1, m ), otherwise LDA must be at least max( 1, k ). Unchanged on exit. B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is n when TRANSB = 'N' or 'n', and is k otherwise. Before entry with TRANSB = 'N' or 'n', the leading k by n part of the array B must contain the matrix B, otherwise the leading n by k part of the array B must contain the matrix B. Unchanged on exit. LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. When TRANSB = 'N' or 'n' then LDB must be at least max( 1, k ), otherwise LDB must be at least max( 1, n ). Unchanged on exit. BETA - DOUBLE PRECISION. On entry, BETA specifies the scalar beta. When BETA is supplied as zero then C need not be set on input. Unchanged on exit. C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). Before entry, the leading m by n part of the array C must contain the matrix C, except when beta is zero, in which case C need not be set on entry. On exit, the array C is overwritten by the m by n matrix ( alpha*op( A )*op( B ) + beta*C ). LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, m ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. Set NOTA and NOTB as true if A and B respectively are not transposed and set NROWA, NCOLA and NROWB as the number of rows and columns of A and the number of rows of B respectively. Parameter adjustments Function Body */ #define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)] #define B(I,J) b[(I)-1 + ((J)-1)* ( *ldb)] #define C(I,J) c[(I)-1 + ((J)-1)* ( *ldc)] nota = lsame_(transa, "N"); notb = lsame_(transb, "N"); if (nota) { nrowa = *m; ncola = *k; } else { nrowa = *k; ncola = *m; } if (notb) { nrowb = *k; } else { nrowb = *n; } /* Test the input parameters. */ info = 0; if (! nota && ! lsame_(transa, "C") && ! lsame_(transa, "T")) { info = 1; } else if (! notb && ! lsame_(transb, "C") && ! lsame_(transb, "T")) { info = 2; } else if (*m < 0) { info = 3; } else if (*n < 0) { info = 4; } else if (*k < 0) { info = 5; } else if (*lda < max(1,nrowa)) { info = 8; } else if (*ldb < max(1,nrowb)) { info = 10; } else if (*ldc < max(1,*m)) { info = 13; } if (info != 0) { xerbla_("DGEMM ", &info); return 0; } /* Quick return if possible. */ if (*m == 0 || *n == 0 || (*alpha == 0. || *k == 0) && *beta == 1.) { return 0; } /* And if alpha.eq.zero. */ if (*alpha == 0.) { if (*beta == 0.) { i__1 = *n; for (j = 1; j <= *n; ++j) { i__2 = *m; for (i = 1; i <= *m; ++i) { C(i,j) = 0.; /* L10: */ } /* L20: */ } } else { i__1 = *n; for (j = 1; j <= *n; ++j) { i__2 = *m; for (i = 1; i <= *m; ++i) { C(i,j) = *beta * C(i,j); /* L30: */ } /* L40: */ } } return 0; } /* Start the operations. */ if (notb) { if (nota) { /* Form C := alpha*A*B + beta*C. */ i__1 = *n; for (j = 1; j <= *n; ++j) { if (*beta == 0.) { i__2 = *m; for (i = 1; i <= *m; ++i) { C(i,j) = 0.; /* L50: */ } } else if (*beta != 1.) { i__2 = *m; for (i = 1; i <= *m; ++i) { C(i,j) = *beta * C(i,j); /* L60: */ } } i__2 = *k; for (l = 1; l <= *k; ++l) { if (B(l,j) != 0.) { temp = *alpha * B(l,j); i__3 = *m; for (i = 1; i <= *m; ++i) { C(i,j) += temp * A(i,l); /* L70: */ } } /* L80: */ } /* L90: */ } } else { /* Form C := alpha*A'*B + beta*C */ i__1 = *n; for (j = 1; j <= *n; ++j) { i__2 = *m; for (i = 1; i <= *m; ++i) { temp = 0.; i__3 = *k; for (l = 1; l <= *k; ++l) { temp += A(l,i) * B(l,j); /* L100: */ } if (*beta == 0.) { C(i,j) = *alpha * temp; } else { C(i,j) = *alpha * temp + *beta * C(i,j); } /* L110: */ } /* L120: */ } } } else { if (nota) { /* Form C := alpha*A*B' + beta*C */ i__1 = *n; for (j = 1; j <= *n; ++j) { if (*beta == 0.) { i__2 = *m; for (i = 1; i <= *m; ++i) { C(i,j) = 0.; /* L130: */ } } else if (*beta != 1.) { i__2 = *m; for (i = 1; i <= *m; ++i) { C(i,j) = *beta * C(i,j); /* L140: */ } } i__2 = *k; for (l = 1; l <= *k; ++l) { if (B(j,l) != 0.) { temp = *alpha * B(j,l); i__3 = *m; for (i = 1; i <= *m; ++i) { C(i,j) += temp * A(i,l); /* L150: */ } } /* L160: */ } /* L170: */ } } else { /* Form C := alpha*A'*B' + beta*C */ i__1 = *n; for (j = 1; j <= *n; ++j) { i__2 = *m; for (i = 1; i <= *m; ++i) { temp = 0.; i__3 = *k; for (l = 1; l <= *k; ++l) { temp += A(l,i) * B(j,l); /* L180: */ } if (*beta == 0.) { C(i,j) = *alpha * temp; } else { C(i,j) = *alpha * temp + *beta * C(i,j); } /* L190: */ } /* L200: */ } } } return 0; /* End of DGEMM . */ } /* dgemm_ */