#include "blaswrap.h" /* ztpt01.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int ztpt01_(char *uplo, char *diag, integer *n, doublecomplex *ap, doublecomplex *ainvp, doublereal *rcond, doublereal *rwork, doublereal *resid ) { /* System generated locals */ integer i__1, i__2, i__3; doublecomplex z__1; /* Local variables */ static integer j, jc; static doublereal eps; extern logical lsame_(char *, char *); static doublereal anorm; static logical unitd; extern /* Subroutine */ int ztpmv_(char *, char *, char *, integer *, doublecomplex *, doublecomplex *, integer *); extern doublereal dlamch_(char *); static doublereal ainvnm; extern doublereal zlantp_(char *, char *, char *, integer *, doublecomplex *, doublereal *); /* -- LAPACK test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= ZTPT01 computes the residual for a triangular matrix A times its inverse when A is stored in packed format: RESID = norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS ), where EPS is the machine epsilon. Arguments ========== UPLO (input) CHARACTER*1 Specifies whether the matrix A is upper or lower triangular. = 'U': Upper triangular = 'L': Lower triangular DIAG (input) CHARACTER*1 Specifies whether or not the matrix A is unit triangular. = 'N': Non-unit triangular = 'U': Unit triangular N (input) INTEGER The order of the matrix A. N >= 0. AP (input) COMPLEX*16 array, dimension (N*(N+1)/2) The original upper or lower triangular matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n. AINVP (input) COMPLEX*16 array, dimension (N*(N+1)/2) On entry, the (triangular) inverse of the matrix A, packed columnwise in a linear array as in AP. On exit, the contents of AINVP are destroyed. RCOND (output) DOUBLE PRECISION The reciprocal condition number of A, computed as 1/(norm(A) * norm(AINV)). RWORK (workspace) DOUBLE PRECISION array, dimension (N) RESID (output) DOUBLE PRECISION norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS ) ===================================================================== Quick exit if N = 0. Parameter adjustments */ --rwork; --ainvp; --ap; /* Function Body */ if (*n <= 0) { *rcond = 1.; *resid = 0.; return 0; } /* Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0. */ eps = dlamch_("Epsilon"); anorm = zlantp_("1", uplo, diag, n, &ap[1], &rwork[1]); ainvnm = zlantp_("1", uplo, diag, n, &ainvp[1], &rwork[1]); if (anorm <= 0. || ainvnm <= 0.) { *rcond = 0.; *resid = 1. / eps; return 0; } *rcond = 1. / anorm / ainvnm; /* Compute A * AINV, overwriting AINV. */ unitd = lsame_(diag, "U"); if (lsame_(uplo, "U")) { jc = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { if (unitd) { i__2 = jc + j - 1; ainvp[i__2].r = 1., ainvp[i__2].i = 0.; } /* Form the j-th column of A*AINV. */ ztpmv_("Upper", "No transpose", diag, &j, &ap[1], &ainvp[jc], & c__1); /* Subtract 1 from the diagonal to form A*AINV - I. */ i__2 = jc + j - 1; i__3 = jc + j - 1; z__1.r = ainvp[i__3].r - 1., z__1.i = ainvp[i__3].i; ainvp[i__2].r = z__1.r, ainvp[i__2].i = z__1.i; jc += j; /* L10: */ } } else { jc = 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { if (unitd) { i__2 = jc; ainvp[i__2].r = 1., ainvp[i__2].i = 0.; } /* Form the j-th column of A*AINV. */ i__2 = *n - j + 1; ztpmv_("Lower", "No transpose", diag, &i__2, &ap[jc], &ainvp[jc], &c__1); /* Subtract 1 from the diagonal to form A*AINV - I. */ i__2 = jc; i__3 = jc; z__1.r = ainvp[i__3].r - 1., z__1.i = ainvp[i__3].i; ainvp[i__2].r = z__1.r, ainvp[i__2].i = z__1.i; jc = jc + *n - j + 1; /* L20: */ } } /* Compute norm(A*AINV - I) / (N * norm(A) * norm(AINV) * EPS) */ *resid = zlantp_("1", uplo, "Non-unit", n, &ainvp[1], &rwork[1]); *resid = *resid * *rcond / (doublereal) (*n) / eps; return 0; /* End of ZTPT01 */ } /* ztpt01_ */