#include "blaswrap.h" /* zqrt13.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__2 = 2; static integer c__1 = 1; static integer c__0 = 0; /* Subroutine */ int zqrt13_(integer *scale, integer *m, integer *n, doublecomplex *a, integer *lda, doublereal *norma, integer *iseed) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4; doublereal d__1, d__2, d__3; doublecomplex z__1, z__2; /* Builtin functions */ double d_sign(doublereal *, doublereal *); /* Local variables */ static integer j, info; static doublereal dummy[1]; extern /* Subroutine */ int dlabad_(doublereal *, doublereal *); extern doublereal dlamch_(char *), zlange_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *); static doublereal bignum; extern /* Subroutine */ int zlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublecomplex *, integer *, integer *); extern doublereal dzasum_(integer *, doublecomplex *, integer *); static doublereal smlnum; extern /* Subroutine */ int zlarnv_(integer *, integer *, integer *, doublecomplex *); /* -- LAPACK test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= ZQRT13 generates a full-rank matrix that may be scaled to have large or small norm. Arguments ========= SCALE (input) INTEGER SCALE = 1: normally scaled matrix SCALE = 2: matrix scaled up SCALE = 3: matrix scaled down M (input) INTEGER The number of rows of the matrix A. N (input) INTEGER The number of columns of A. A (output) COMPLEX*16 array, dimension (LDA,N) The M-by-N matrix A. LDA (input) INTEGER The leading dimension of the array A. NORMA (output) DOUBLE PRECISION The one-norm of A. ISEED (input/output) integer array, dimension (4) Seed for random number generator ===================================================================== Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --iseed; /* Function Body */ if (*m <= 0 || *n <= 0) { return 0; } /* benign matrix */ i__1 = *n; for (j = 1; j <= i__1; ++j) { zlarnv_(&c__2, &iseed[1], m, &a[j * a_dim1 + 1]); if (j <= *m) { i__2 = j + j * a_dim1; i__3 = j + j * a_dim1; d__2 = dzasum_(m, &a[j * a_dim1 + 1], &c__1); i__4 = j + j * a_dim1; d__3 = a[i__4].r; d__1 = d_sign(&d__2, &d__3); z__2.r = d__1, z__2.i = 0.; z__1.r = a[i__3].r + z__2.r, z__1.i = a[i__3].i + z__2.i; a[i__2].r = z__1.r, a[i__2].i = z__1.i; } /* L10: */ } /* scaled versions */ if (*scale != 1) { *norma = zlange_("Max", m, n, &a[a_offset], lda, dummy); smlnum = dlamch_("Safe minimum"); bignum = 1. / smlnum; dlabad_(&smlnum, &bignum); smlnum /= dlamch_("Epsilon"); bignum = 1. / smlnum; if (*scale == 2) { /* matrix scaled up */ zlascl_("General", &c__0, &c__0, norma, &bignum, m, n, &a[ a_offset], lda, &info); } else if (*scale == 3) { /* matrix scaled down */ zlascl_("General", &c__0, &c__0, norma, &smlnum, m, n, &a[ a_offset], lda, &info); } } *norma = zlange_("One-norm", m, n, &a[a_offset], lda, dummy); return 0; /* End of ZQRT13 */ } /* zqrt13_ */