#include "blaswrap.h" /* zqpt01.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__10 = 10; static integer c__1 = 1; static doublecomplex c_b16 = {-1.,0.}; doublereal zqpt01_(integer *m, integer *n, integer *k, doublecomplex *a, doublecomplex *af, integer *lda, doublecomplex *tau, integer *jpvt, doublecomplex *work, integer *lwork) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, i__1, i__2, i__3, i__4; doublereal ret_val; /* Local variables */ static integer i__, j, info; static doublereal norma, rwork[1]; extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), zaxpy_(integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *); extern doublereal dlamch_(char *); extern /* Subroutine */ int xerbla_(char *, integer *); extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *); extern /* Subroutine */ int zunmqr_(char *, char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, integer *); /* -- LAPACK test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= ZQPT01 tests the QR-factorization with pivoting of a matrix A. The array AF contains the (possibly partial) QR-factorization of A, where the upper triangle of AF(1:k,1:k) is a partial triangular factor, the entries below the diagonal in the first k columns are the Householder vectors, and the rest of AF contains a partially updated matrix. This function returns ||A*P - Q*R||/(||norm(A)||*eps*M) Arguments ========= M (input) INTEGER The number of rows of the matrices A and AF. N (input) INTEGER The number of columns of the matrices A and AF. K (input) INTEGER The number of columns of AF that have been reduced to upper triangular form. A (input) COMPLEX*16 array, dimension (LDA, N) The original matrix A. AF (input) COMPLEX*16 array, dimension (LDA,N) The (possibly partial) output of ZGEQPF. The upper triangle of AF(1:k,1:k) is a partial triangular factor, the entries below the diagonal in the first k columns are the Householder vectors, and the rest of AF contains a partially updated matrix. LDA (input) INTEGER The leading dimension of the arrays A and AF. TAU (input) COMPLEX*16 array, dimension (K) Details of the Householder transformations as returned by ZGEQPF. JPVT (input) INTEGER array, dimension (N) Pivot information as returned by ZGEQPF. WORK (workspace) COMPLEX*16 array, dimension (LWORK) LWORK (input) INTEGER The length of the array WORK. LWORK >= M*N+N. ===================================================================== Parameter adjustments */ af_dim1 = *lda; af_offset = 1 + af_dim1; af -= af_offset; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --jpvt; --work; /* Function Body */ ret_val = 0.; /* Test if there is enough workspace */ if (*lwork < *m * *n + *n) { xerbla_("ZQPT01", &c__10); return ret_val; } /* Quick return if possible */ if (*m <= 0 || *n <= 0) { return ret_val; } norma = zlange_("One-norm", m, n, &a[a_offset], lda, rwork); i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = min(j,*m); for (i__ = 1; i__ <= i__2; ++i__) { i__3 = (j - 1) * *m + i__; i__4 = i__ + j * af_dim1; work[i__3].r = af[i__4].r, work[i__3].i = af[i__4].i; /* L10: */ } i__2 = *m; for (i__ = j + 1; i__ <= i__2; ++i__) { i__3 = (j - 1) * *m + i__; work[i__3].r = 0., work[i__3].i = 0.; /* L20: */ } /* L30: */ } i__1 = *n; for (j = *k + 1; j <= i__1; ++j) { zcopy_(m, &af[j * af_dim1 + 1], &c__1, &work[(j - 1) * *m + 1], &c__1) ; /* L40: */ } i__1 = *lwork - *m * *n; zunmqr_("Left", "No transpose", m, n, k, &af[af_offset], lda, &tau[1], & work[1], m, &work[*m * *n + 1], &i__1, &info); i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Compare i-th column of QR and jpvt(i)-th column of A */ zaxpy_(m, &c_b16, &a[jpvt[j] * a_dim1 + 1], &c__1, &work[(j - 1) * *m + 1], &c__1); /* L50: */ } ret_val = zlange_("One-norm", m, n, &work[1], m, rwork) / (( doublereal) max(*m,*n) * dlamch_("Epsilon")); if (norma != 0.) { ret_val /= norma; } return ret_val; /* End of ZQPT01 */ } /* zqpt01_ */