#include "blaswrap.h" /* zchktp.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Common Block Declarations */ struct { integer infot, iounit; logical ok, lerr; } infoc_; #define infoc_1 infoc_ struct { char srnamt[6]; } srnamc_; #define srnamc_1 srnamc_ /* Table of constant values */ static integer c__1 = 1; static integer c__0 = 0; static integer c_n1 = -1; static integer c__2 = 2; static integer c__3 = 3; static integer c__7 = 7; static integer c__4 = 4; static doublereal c_b103 = 1.; static integer c__8 = 8; static integer c__9 = 9; /* Subroutine */ int zchktp_(logical *dotype, integer *nn, integer *nval, integer *nns, integer *nsval, doublereal *thresh, logical *tsterr, integer *nmax, doublecomplex *ap, doublecomplex *ainvp, doublecomplex *b, doublecomplex *x, doublecomplex *xact, doublecomplex *work, doublereal *rwork, integer *nout) { /* Initialized data */ static integer iseedy[4] = { 1988,1989,1990,1991 }; static char uplos[1*2] = "U" "L"; static char transs[1*3] = "N" "T" "C"; /* Format strings */ static char fmt_9999[] = "(\002 UPLO='\002,a1,\002', DIAG='\002,a1,\002'" ", N=\002,i5,\002, type \002,i2,\002, test(\002,i2,\002)= \002,g1" "2.5)"; static char fmt_9998[] = "(\002 UPLO='\002,a1,\002', TRANS='\002,a1,\002" "', DIAG='\002,a1,\002', N=\002,i5,\002', NRHS=\002,i5,\002, type " "\002,i2,\002, test(\002,i2,\002)= \002,g12.5)"; static char fmt_9997[] = "(1x,a6,\002( '\002,a1,\002', '\002,a1,\002', " "'\002,a1,\002',\002,i5,\002, ... ), type \002,i2,\002, test(\002" ",i2,\002)=\002,g12.5)"; static char fmt_9996[] = "(1x,a6,\002( '\002,a1,\002', '\002,a1,\002', " "'\002,a1,\002', '\002,a1,\002',\002,i5,\002, ... ), type \002,i2," "\002, test(\002,i2,\002)=\002,g12.5)"; /* System generated locals */ address a__1[2], a__2[3], a__3[4]; integer i__1, i__2[2], i__3, i__4[3], i__5[4]; char ch__1[2], ch__2[3], ch__3[4]; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen), s_cat(char *, char **, integer *, integer *, ftnlen); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ static integer i__, k, n, in, lda, lap; static char diag[1]; static integer imat, info; static char path[3]; static integer irhs, nrhs; static char norm[1], uplo[1]; static integer nrun; extern /* Subroutine */ int alahd_(integer *, char *); static integer idiag; static doublereal scale; static integer nfail, iseed[4]; extern logical lsame_(char *, char *); static doublereal rcond, anorm; static integer itran; extern /* Subroutine */ int zget04_(integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal * ); static char trans[1]; static integer iuplo, nerrs; extern /* Subroutine */ int ztpt01_(char *, char *, integer *, doublecomplex *, doublecomplex *, doublereal *, doublereal *, doublereal *), zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), ztpt02_(char *, char *, char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublereal *, doublereal *), ztpt03_(char *, char *, char *, integer *, integer *, doublecomplex *, doublereal *, doublereal *, doublereal *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublereal *), ztpt05_(char *, char *, char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublereal *) ; static char xtype[1]; extern /* Subroutine */ int ztpt06_(doublereal *, doublereal *, char *, char *, integer *, doublecomplex *, doublereal *, doublereal *), alaerh_(char *, char *, integer *, integer *, char *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *, integer *); static doublereal rcondc, rcondi; extern /* Subroutine */ int alasum_(char *, integer *, integer *, integer *, integer *); static doublereal rcondo, ainvnm; extern /* Subroutine */ int zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), zlarhs_(char *, char *, char *, char *, integer *, integer *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, integer *); extern doublereal zlantp_(char *, char *, char *, integer *, doublecomplex *, doublereal *); extern /* Subroutine */ int zlatps_(char *, char *, char *, char *, integer *, doublecomplex *, doublecomplex *, doublereal *, doublereal *, integer *); static doublereal result[9]; extern /* Subroutine */ int zlattp_(integer *, char *, char *, char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, doublereal *, integer *), ztpcon_(char *, char *, char *, integer *, doublecomplex *, doublereal *, doublecomplex *, doublereal *, integer *), zerrtr_(char *, integer *), ztprfs_(char *, char *, char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, doublereal *, integer *), ztptri_(char *, char *, integer *, doublecomplex *, integer *), ztptrs_( char *, char *, char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, integer *); /* Fortran I/O blocks */ static cilist io___26 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___34 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___36 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___38 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___39 = { 0, 0, 0, fmt_9996, 0 }; /* -- LAPACK test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= ZCHKTP tests ZTPTRI, -TRS, -RFS, and -CON, and ZLATPS Arguments ========= DOTYPE (input) LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. NN (input) INTEGER The number of values of N contained in the vector NVAL. NVAL (input) INTEGER array, dimension (NN) The values of the matrix column dimension N. NNS (input) INTEGER The number of values of NRHS contained in the vector NSVAL. NSVAL (input) INTEGER array, dimension (NNS) The values of the number of right hand sides NRHS. THRESH (input) DOUBLE PRECISION The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0. TSTERR (input) LOGICAL Flag that indicates whether error exits are to be tested. NMAX (input) INTEGER The leading dimension of the work arrays. NMAX >= the maximumm value of N in NVAL. AP (workspace) COMPLEX*16 array, dimension (NMAX*(NMAX+1)/2) AINVP (workspace) COMPLEX*16 array, dimension (NMAX*(NMAX+1)/2) B (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) where NSMAX is the largest entry in NSVAL. X (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) XACT (workspace) COMPLEX*16 array, dimension (NMAX*NSMAX) WORK (workspace) COMPLEX*16 array, dimension (NMAX*max(3,NSMAX)) RWORK (workspace) DOUBLE PRECISION array, dimension (max(NMAX,2*NSMAX)) NOUT (input) INTEGER The unit number for output. ===================================================================== Parameter adjustments */ --rwork; --work; --xact; --x; --b; --ainvp; --ap; --nsval; --nval; --dotype; /* Function Body Initialize constants and the random number seed. */ s_copy(path, "Zomplex precision", (ftnlen)1, (ftnlen)17); s_copy(path + 1, "TP", (ftnlen)2, (ftnlen)2); nrun = 0; nfail = 0; nerrs = 0; for (i__ = 1; i__ <= 4; ++i__) { iseed[i__ - 1] = iseedy[i__ - 1]; /* L10: */ } /* Test the error exits */ if (*tsterr) { zerrtr_(path, nout); } infoc_1.infot = 0; i__1 = *nn; for (in = 1; in <= i__1; ++in) { /* Do for each value of N in NVAL */ n = nval[in]; lda = max(1,n); lap = lda * (lda + 1) / 2; *(unsigned char *)xtype = 'N'; for (imat = 1; imat <= 10; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L70; } for (iuplo = 1; iuplo <= 2; ++iuplo) { /* Do first for UPLO = 'U', then for UPLO = 'L' */ *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; /* Call ZLATTP to generate a triangular test matrix. */ s_copy(srnamc_1.srnamt, "ZLATTP", (ftnlen)6, (ftnlen)6); zlattp_(&imat, uplo, "No transpose", diag, iseed, &n, &ap[1], &x[1], &work[1], &rwork[1], &info); /* Set IDIAG = 1 for non-unit matrices, 2 for unit. */ if (lsame_(diag, "N")) { idiag = 1; } else { idiag = 2; } /* + TEST 1 Form the inverse of A. */ if (n > 0) { zcopy_(&lap, &ap[1], &c__1, &ainvp[1], &c__1); } s_copy(srnamc_1.srnamt, "ZTPTRI", (ftnlen)6, (ftnlen)6); ztptri_(uplo, diag, &n, &ainvp[1], &info); /* Check error code from ZTPTRI. */ if (info != 0) { /* Writing concatenation */ i__2[0] = 1, a__1[0] = uplo; i__2[1] = 1, a__1[1] = diag; s_cat(ch__1, a__1, i__2, &c__2, (ftnlen)2); alaerh_(path, "ZTPTRI", &info, &c__0, ch__1, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } /* Compute the infinity-norm condition number of A. */ anorm = zlantp_("I", uplo, diag, &n, &ap[1], &rwork[1]); ainvnm = zlantp_("I", uplo, diag, &n, &ainvp[1], &rwork[1]); if (anorm <= 0. || ainvnm <= 0.) { rcondi = 1.; } else { rcondi = 1. / anorm / ainvnm; } /* Compute the residual for the triangular matrix times its inverse. Also compute the 1-norm condition number of A. */ ztpt01_(uplo, diag, &n, &ap[1], &ainvp[1], &rcondo, &rwork[1], result); /* Print the test ratio if it is .GE. THRESH. */ if (result[0] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___26.ciunit = *nout; s_wsfe(&io___26); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__1, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[0], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } ++nrun; i__3 = *nns; for (irhs = 1; irhs <= i__3; ++irhs) { nrhs = nsval[irhs]; *(unsigned char *)xtype = 'N'; for (itran = 1; itran <= 3; ++itran) { /* Do for op(A) = A, A**T, or A**H. */ *(unsigned char *)trans = *(unsigned char *)&transs[ itran - 1]; if (itran == 1) { *(unsigned char *)norm = 'O'; rcondc = rcondo; } else { *(unsigned char *)norm = 'I'; rcondc = rcondi; } /* + TEST 2 Solve and compute residual for op(A)*x = b. */ s_copy(srnamc_1.srnamt, "ZLARHS", (ftnlen)6, (ftnlen) 6); zlarhs_(path, xtype, uplo, trans, &n, &n, &c__0, & idiag, &nrhs, &ap[1], &lap, &xact[1], &lda, & b[1], &lda, iseed, &info); *(unsigned char *)xtype = 'C'; zlacpy_("Full", &n, &nrhs, &b[1], &lda, &x[1], &lda); s_copy(srnamc_1.srnamt, "ZTPTRS", (ftnlen)6, (ftnlen) 6); ztptrs_(uplo, trans, diag, &n, &nrhs, &ap[1], &x[1], & lda, &info); /* Check error code from ZTPTRS. */ if (info != 0) { /* Writing concatenation */ i__4[0] = 1, a__2[0] = uplo; i__4[1] = 1, a__2[1] = trans; i__4[2] = 1, a__2[2] = diag; s_cat(ch__2, a__2, i__4, &c__3, (ftnlen)3); alaerh_(path, "ZTPTRS", &info, &c__0, ch__2, &n, & n, &c_n1, &c_n1, &c_n1, &imat, &nfail, & nerrs, nout); } ztpt02_(uplo, trans, diag, &n, &nrhs, &ap[1], &x[1], & lda, &b[1], &lda, &work[1], &rwork[1], & result[1]); /* + TEST 3 Check solution from generated exact solution. */ zget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[2]); /* + TESTS 4, 5, and 6 Use iterative refinement to improve the solution and compute error bounds. */ s_copy(srnamc_1.srnamt, "ZTPRFS", (ftnlen)6, (ftnlen) 6); ztprfs_(uplo, trans, diag, &n, &nrhs, &ap[1], &b[1], & lda, &x[1], &lda, &rwork[1], &rwork[nrhs + 1], &work[1], &rwork[(nrhs << 1) + 1], &info); /* Check error code from ZTPRFS. */ if (info != 0) { /* Writing concatenation */ i__4[0] = 1, a__2[0] = uplo; i__4[1] = 1, a__2[1] = trans; i__4[2] = 1, a__2[2] = diag; s_cat(ch__2, a__2, i__4, &c__3, (ftnlen)3); alaerh_(path, "ZTPRFS", &info, &c__0, ch__2, &n, & n, &c_n1, &c_n1, &nrhs, &imat, &nfail, & nerrs, nout); } zget04_(&n, &nrhs, &x[1], &lda, &xact[1], &lda, & rcondc, &result[3]); ztpt05_(uplo, trans, diag, &n, &nrhs, &ap[1], &b[1], & lda, &x[1], &lda, &xact[1], &lda, &rwork[1], & rwork[nrhs + 1], &result[4]); /* Print information about the tests that did not pass the threshold. */ for (k = 2; k <= 6; ++k) { if (result[k - 1] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___34.ciunit = *nout; s_wsfe(&io___34); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&nrhs, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&result[k - 1], (ftnlen) sizeof(doublereal)); e_wsfe(); ++nfail; } /* L20: */ } nrun += 5; /* L30: */ } /* L40: */ } /* + TEST 7 Get an estimate of RCOND = 1/CNDNUM. */ for (itran = 1; itran <= 2; ++itran) { if (itran == 1) { *(unsigned char *)norm = 'O'; rcondc = rcondo; } else { *(unsigned char *)norm = 'I'; rcondc = rcondi; } s_copy(srnamc_1.srnamt, "ZTPCON", (ftnlen)6, (ftnlen)6); ztpcon_(norm, uplo, diag, &n, &ap[1], &rcond, &work[1], & rwork[1], &info); /* Check error code from ZTPCON. */ if (info != 0) { /* Writing concatenation */ i__4[0] = 1, a__2[0] = norm; i__4[1] = 1, a__2[1] = uplo; i__4[2] = 1, a__2[2] = diag; s_cat(ch__2, a__2, i__4, &c__3, (ftnlen)3); alaerh_(path, "ZTPCON", &info, &c__0, ch__2, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } ztpt06_(&rcond, &rcondc, uplo, diag, &n, &ap[1], &rwork[1] , &result[6]); /* Print the test ratio if it is .GE. THRESH. */ if (result[6] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___36.ciunit = *nout; s_wsfe(&io___36); do_fio(&c__1, "ZTPCON", (ftnlen)6); do_fio(&c__1, norm, (ftnlen)1); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__7, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[6], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } ++nrun; /* L50: */ } /* L60: */ } L70: ; } /* Use pathological test matrices to test ZLATPS. */ for (imat = 11; imat <= 18; ++imat) { /* Do the tests only if DOTYPE( IMAT ) is true. */ if (! dotype[imat]) { goto L100; } for (iuplo = 1; iuplo <= 2; ++iuplo) { /* Do first for UPLO = 'U', then for UPLO = 'L' */ *(unsigned char *)uplo = *(unsigned char *)&uplos[iuplo - 1]; for (itran = 1; itran <= 3; ++itran) { /* Do for op(A) = A, A**T, or A**H. */ *(unsigned char *)trans = *(unsigned char *)&transs[itran - 1]; /* Call ZLATTP to generate a triangular test matrix. */ s_copy(srnamc_1.srnamt, "ZLATTP", (ftnlen)6, (ftnlen)6); zlattp_(&imat, uplo, trans, diag, iseed, &n, &ap[1], &x[1] , &work[1], &rwork[1], &info); /* + TEST 8 Solve the system op(A)*x = b. */ s_copy(srnamc_1.srnamt, "ZLATPS", (ftnlen)6, (ftnlen)6); zcopy_(&n, &x[1], &c__1, &b[1], &c__1); zlatps_(uplo, trans, diag, "N", &n, &ap[1], &b[1], &scale, &rwork[1], &info); /* Check error code from ZLATPS. */ if (info != 0) { /* Writing concatenation */ i__5[0] = 1, a__3[0] = uplo; i__5[1] = 1, a__3[1] = trans; i__5[2] = 1, a__3[2] = diag; i__5[3] = 1, a__3[3] = "N"; s_cat(ch__3, a__3, i__5, &c__4, (ftnlen)4); alaerh_(path, "ZLATPS", &info, &c__0, ch__3, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } ztpt03_(uplo, trans, diag, &n, &c__1, &ap[1], &scale, & rwork[1], &c_b103, &b[1], &lda, &x[1], &lda, & work[1], &result[7]); /* + TEST 9 Solve op(A)*x = b again with NORMIN = 'Y'. */ zcopy_(&n, &x[1], &c__1, &b[n + 1], &c__1); zlatps_(uplo, trans, diag, "Y", &n, &ap[1], &b[n + 1], & scale, &rwork[1], &info); /* Check error code from ZLATPS. */ if (info != 0) { /* Writing concatenation */ i__5[0] = 1, a__3[0] = uplo; i__5[1] = 1, a__3[1] = trans; i__5[2] = 1, a__3[2] = diag; i__5[3] = 1, a__3[3] = "Y"; s_cat(ch__3, a__3, i__5, &c__4, (ftnlen)4); alaerh_(path, "ZLATPS", &info, &c__0, ch__3, &n, &n, & c_n1, &c_n1, &c_n1, &imat, &nfail, &nerrs, nout); } ztpt03_(uplo, trans, diag, &n, &c__1, &ap[1], &scale, & rwork[1], &c_b103, &b[n + 1], &lda, &x[1], &lda, & work[1], &result[8]); /* Print information about the tests that did not pass the threshold. */ if (result[7] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___38.ciunit = *nout; s_wsfe(&io___38); do_fio(&c__1, "ZLATPS", (ftnlen)6); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, "N", (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__8, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[7], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } if (result[8] >= *thresh) { if (nfail == 0 && nerrs == 0) { alahd_(nout, path); } io___39.ciunit = *nout; s_wsfe(&io___39); do_fio(&c__1, "ZLATPS", (ftnlen)6); do_fio(&c__1, uplo, (ftnlen)1); do_fio(&c__1, trans, (ftnlen)1); do_fio(&c__1, diag, (ftnlen)1); do_fio(&c__1, "Y", (ftnlen)1); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&c__9, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[8], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } nrun += 2; /* L80: */ } /* L90: */ } L100: ; } /* L110: */ } /* Print a summary of the results. */ alasum_(path, nout, &nfail, &nrun, &nerrs); return 0; /* End of ZCHKTP */ } /* zchktp_ */