#include "blaswrap.h" /* dtrt02.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; static doublereal c_b10 = -1.; /* Subroutine */ int dtrt02_(char *uplo, char *trans, char *diag, integer *n, integer *nrhs, doublereal *a, integer *lda, doublereal *x, integer * ldx, doublereal *b, integer *ldb, doublereal *work, doublereal *resid) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, i__1; doublereal d__1, d__2; /* Local variables */ static integer j; static doublereal eps; extern logical lsame_(char *, char *); extern doublereal dasum_(integer *, doublereal *, integer *); static doublereal anorm, bnorm; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *), daxpy_(integer *, doublereal *, doublereal *, integer *, doublereal *, integer *), dtrmv_(char *, char *, char *, integer *, doublereal *, integer *, doublereal *, integer *); static doublereal xnorm; extern doublereal dlamch_(char *), dlantr_(char *, char *, char *, integer *, integer *, doublereal *, integer *, doublereal *); /* -- LAPACK test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= DTRT02 computes the residual for the computed solution to a triangular system of linear equations A*x = b or A'*x = b. Here A is a triangular matrix, A' is the transpose of A, and x and b are N by NRHS matrices. The test ratio is the maximum over the number of right hand sides of norm(b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), where op(A) denotes A or A' and EPS is the machine epsilon. Arguments ========= UPLO (input) CHARACTER*1 Specifies whether the matrix A is upper or lower triangular. = 'U': Upper triangular = 'L': Lower triangular TRANS (input) CHARACTER*1 Specifies the operation applied to A. = 'N': A *x = b (No transpose) = 'T': A'*x = b (Transpose) = 'C': A'*x = b (Conjugate transpose = Transpose) DIAG (input) CHARACTER*1 Specifies whether or not the matrix A is unit triangular. = 'N': Non-unit triangular = 'U': Unit triangular N (input) INTEGER The order of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrices X and B. NRHS >= 0. A (input) DOUBLE PRECISION array, dimension (LDA,N) The triangular matrix A. If UPLO = 'U', the leading n by n upper triangular part of the array A contains the upper triangular matrix, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading n by n lower triangular part of the array A contains the lower triangular matrix, and the strictly upper triangular part of A is not referenced. If DIAG = 'U', the diagonal elements of A are also not referenced and are assumed to be 1. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). X (input) DOUBLE PRECISION array, dimension (LDX,NRHS) The computed solution vectors for the system of linear equations. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(1,N). B (input) DOUBLE PRECISION array, dimension (LDB,NRHS) The right hand side vectors for the system of linear equations. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). WORK (workspace) DOUBLE PRECISION array, dimension (N) RESID (output) DOUBLE PRECISION The maximum over the number of right hand sides of norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ). ===================================================================== Quick exit if N = 0 or NRHS = 0 Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --work; /* Function Body */ if (*n <= 0 || *nrhs <= 0) { *resid = 0.; return 0; } /* Compute the 1-norm of A or A'. */ if (lsame_(trans, "N")) { anorm = dlantr_("1", uplo, diag, n, n, &a[a_offset], lda, &work[1]); } else { anorm = dlantr_("I", uplo, diag, n, n, &a[a_offset], lda, &work[1]); } /* Exit with RESID = 1/EPS if ANORM = 0. */ eps = dlamch_("Epsilon"); if (anorm <= 0.) { *resid = 1. / eps; return 0; } /* Compute the maximum over the number of right hand sides of norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ) */ *resid = 0.; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { dcopy_(n, &x[j * x_dim1 + 1], &c__1, &work[1], &c__1); dtrmv_(uplo, trans, diag, n, &a[a_offset], lda, &work[1], &c__1); daxpy_(n, &c_b10, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1); bnorm = dasum_(n, &work[1], &c__1); xnorm = dasum_(n, &x[j * x_dim1 + 1], &c__1); if (xnorm <= 0.) { *resid = 1. / eps; } else { /* Computing MAX */ d__1 = *resid, d__2 = bnorm / anorm / xnorm / eps; *resid = max(d__1,d__2); } /* L10: */ } return 0; /* End of DTRT02 */ } /* dtrt02_ */