#include "blaswrap.h" /* dqrt15.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__16 = 16; static integer c__2 = 2; static integer c__1 = 1; static doublereal c_b18 = 0.; static doublereal c_b19 = 1.; static doublereal c_b22 = 2.; static integer c__0 = 0; /* Subroutine */ int dqrt15_(integer *scale, integer *rksel, integer *m, integer *n, integer *nrhs, doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal *s, integer *rank, doublereal *norma, doublereal *normb, integer *iseed, doublereal *work, integer *lwork) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2; doublereal d__1; /* Local variables */ static integer j, mn; static doublereal eps; static integer info; static doublereal temp; extern doublereal dnrm2_(integer *, doublereal *, integer *); extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *), dlarf_(char *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *), dgemm_(char *, char *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); extern doublereal dasum_(integer *, doublereal *, integer *); static doublereal dummy[1]; extern doublereal dlamch_(char *), dlange_(char *, integer *, integer *, doublereal *, integer *, doublereal *); extern /* Subroutine */ int dlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *); extern doublereal dlarnd_(integer *, integer *); extern /* Subroutine */ int dlaord_(char *, integer *, doublereal *, integer *), dlaset_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *); static doublereal bignum; extern /* Subroutine */ int dlaror_(char *, char *, integer *, integer *, doublereal *, integer *, integer *, doublereal *, integer *), dlarnv_(integer *, integer *, integer *, doublereal *); static doublereal smlnum; /* -- LAPACK test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= DQRT15 generates a matrix with full or deficient rank and of various norms. Arguments ========= SCALE (input) INTEGER SCALE = 1: normally scaled matrix SCALE = 2: matrix scaled up SCALE = 3: matrix scaled down RKSEL (input) INTEGER RKSEL = 1: full rank matrix RKSEL = 2: rank-deficient matrix M (input) INTEGER The number of rows of the matrix A. N (input) INTEGER The number of columns of A. NRHS (input) INTEGER The number of columns of B. A (output) DOUBLE PRECISION array, dimension (LDA,N) The M-by-N matrix A. LDA (input) INTEGER The leading dimension of the array A. B (output) DOUBLE PRECISION array, dimension (LDB, NRHS) A matrix that is in the range space of matrix A. LDB (input) INTEGER The leading dimension of the array B. S (output) DOUBLE PRECISION array, dimension MIN(M,N) Singular values of A. RANK (output) INTEGER number of nonzero singular values of A. NORMA (output) DOUBLE PRECISION one-norm of A. NORMB (output) DOUBLE PRECISION one-norm of B. ISEED (input/output) integer array, dimension (4) seed for random number generator. WORK (workspace) DOUBLE PRECISION array, dimension (LWORK) LWORK (input) INTEGER length of work space required. LWORK >= MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M) ===================================================================== Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --s; --iseed; --work; /* Function Body */ mn = min(*m,*n); /* Computing MAX */ i__1 = *m + mn, i__2 = mn * *nrhs, i__1 = max(i__1,i__2), i__2 = (*n << 1) + *m; if (*lwork < max(i__1,i__2)) { xerbla_("DQRT15", &c__16); return 0; } smlnum = dlamch_("Safe minimum"); bignum = 1. / smlnum; eps = dlamch_("Epsilon"); smlnum = smlnum / eps / eps; bignum = 1. / smlnum; /* Determine rank and (unscaled) singular values */ if (*rksel == 1) { *rank = mn; } else if (*rksel == 2) { *rank = mn * 3 / 4; i__1 = mn; for (j = *rank + 1; j <= i__1; ++j) { s[j] = 0.; /* L10: */ } } else { xerbla_("DQRT15", &c__2); } if (*rank > 0) { /* Nontrivial case */ s[1] = 1.; i__1 = *rank; for (j = 2; j <= i__1; ++j) { L20: temp = dlarnd_(&c__1, &iseed[1]); if (temp > .1) { s[j] = abs(temp); } else { goto L20; } /* L30: */ } dlaord_("Decreasing", rank, &s[1], &c__1); /* Generate 'rank' columns of a random orthogonal matrix in A */ dlarnv_(&c__2, &iseed[1], m, &work[1]); d__1 = 1. / dnrm2_(m, &work[1], &c__1); dscal_(m, &d__1, &work[1], &c__1); dlaset_("Full", m, rank, &c_b18, &c_b19, &a[a_offset], lda) ; dlarf_("Left", m, rank, &work[1], &c__1, &c_b22, &a[a_offset], lda, & work[*m + 1]); /* workspace used: m+mn Generate consistent rhs in the range space of A */ i__1 = *rank * *nrhs; dlarnv_(&c__2, &iseed[1], &i__1, &work[1]); dgemm_("No transpose", "No transpose", m, nrhs, rank, &c_b19, &a[ a_offset], lda, &work[1], rank, &c_b18, &b[b_offset], ldb); /* work space used: <= mn *nrhs generate (unscaled) matrix A */ i__1 = *rank; for (j = 1; j <= i__1; ++j) { dscal_(m, &s[j], &a[j * a_dim1 + 1], &c__1); /* L40: */ } if (*rank < *n) { i__1 = *n - *rank; dlaset_("Full", m, &i__1, &c_b18, &c_b18, &a[(*rank + 1) * a_dim1 + 1], lda); } dlaror_("Right", "No initialization", m, n, &a[a_offset], lda, &iseed[ 1], &work[1], &info); } else { /* work space used 2*n+m Generate null matrix and rhs */ i__1 = mn; for (j = 1; j <= i__1; ++j) { s[j] = 0.; /* L50: */ } dlaset_("Full", m, n, &c_b18, &c_b18, &a[a_offset], lda); dlaset_("Full", m, nrhs, &c_b18, &c_b18, &b[b_offset], ldb) ; } /* Scale the matrix */ if (*scale != 1) { *norma = dlange_("Max", m, n, &a[a_offset], lda, dummy); if (*norma != 0.) { if (*scale == 2) { /* matrix scaled up */ dlascl_("General", &c__0, &c__0, norma, &bignum, m, n, &a[ a_offset], lda, &info); dlascl_("General", &c__0, &c__0, norma, &bignum, &mn, &c__1, & s[1], &mn, &info); dlascl_("General", &c__0, &c__0, norma, &bignum, m, nrhs, &b[ b_offset], ldb, &info); } else if (*scale == 3) { /* matrix scaled down */ dlascl_("General", &c__0, &c__0, norma, &smlnum, m, n, &a[ a_offset], lda, &info); dlascl_("General", &c__0, &c__0, norma, &smlnum, &mn, &c__1, & s[1], &mn, &info); dlascl_("General", &c__0, &c__0, norma, &smlnum, m, nrhs, &b[ b_offset], ldb, &info); } else { xerbla_("DQRT15", &c__1); return 0; } } } *norma = dasum_(&mn, &s[1], &c__1); *normb = dlange_("One-norm", m, nrhs, &b[b_offset], ldb, dummy) ; return 0; /* End of DQRT15 */ } /* dqrt15_ */