#include "blaswrap.h" /* zlarfy.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static doublecomplex c_b1 = {1.,0.}; static doublecomplex c_b2 = {0.,0.}; static integer c__1 = 1; /* Subroutine */ int zlarfy_(char *uplo, integer *n, doublecomplex *v, integer *incv, doublecomplex *tau, doublecomplex *c__, integer *ldc, doublecomplex *work) { /* System generated locals */ integer c_dim1, c_offset; doublecomplex z__1, z__2, z__3, z__4; /* Local variables */ extern /* Subroutine */ int zher2_(char *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); static doublecomplex alpha; extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); extern /* Subroutine */ int zhemv_(char *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *), zaxpy_( integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *); /* -- LAPACK auxiliary test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= ZLARFY applies an elementary reflector, or Householder matrix, H, to an n x n Hermitian matrix C, from both the left and the right. H is represented in the form H = I - tau * v * v' where tau is a scalar and v is a vector. If tau is zero, then H is taken to be the unit matrix. Arguments ========= UPLO (input) CHARACTER*1 Specifies whether the upper or lower triangular part of the Hermitian matrix C is stored. = 'U': Upper triangle = 'L': Lower triangle N (input) INTEGER The number of rows and columns of the matrix C. N >= 0. V (input) COMPLEX*16 array, dimension (1 + (N-1)*abs(INCV)) The vector v as described above. INCV (input) INTEGER The increment between successive elements of v. INCV must not be zero. TAU (input) COMPLEX*16 The value tau as described above. C (input/output) COMPLEX*16 array, dimension (LDC, N) On entry, the matrix C. On exit, C is overwritten by H * C * H'. LDC (input) INTEGER The leading dimension of the array C. LDC >= max( 1, N ). WORK (workspace) COMPLEX*16 array, dimension (N) ===================================================================== Parameter adjustments */ --v; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; --work; /* Function Body */ if (tau->r == 0. && tau->i == 0.) { return 0; } /* Form w:= C * v */ zhemv_(uplo, n, &c_b1, &c__[c_offset], ldc, &v[1], incv, &c_b2, &work[1], &c__1); z__3.r = -.5, z__3.i = -0.; z__2.r = z__3.r * tau->r - z__3.i * tau->i, z__2.i = z__3.r * tau->i + z__3.i * tau->r; zdotc_(&z__4, n, &work[1], &c__1, &v[1], incv); z__1.r = z__2.r * z__4.r - z__2.i * z__4.i, z__1.i = z__2.r * z__4.i + z__2.i * z__4.r; alpha.r = z__1.r, alpha.i = z__1.i; zaxpy_(n, &alpha, &v[1], incv, &work[1], &c__1); /* C := C - v * w' - w * v' */ z__1.r = -tau->r, z__1.i = -tau->i; zher2_(uplo, n, &z__1, &v[1], incv, &work[1], &c__1, &c__[c_offset], ldc); return 0; /* End of ZLARFY */ } /* zlarfy_ */