#include "blaswrap.h" /* sort01.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static real c_b7 = 0.f; static real c_b8 = 1.f; static real c_b10 = -1.f; static integer c__1 = 1; /* Subroutine */ int sort01_(char *rowcol, integer *m, integer *n, real *u, integer *ldu, real *work, integer *lwork, real *resid ) { /* System generated locals */ integer u_dim1, u_offset, i__1, i__2; real r__1, r__2; /* Local variables */ static integer i__, j, k; static real eps, tmp; extern doublereal sdot_(integer *, real *, integer *, real *, integer *); extern logical lsame_(char *, char *); static integer mnmin; extern /* Subroutine */ int ssyrk_(char *, char *, integer *, integer *, real *, real *, integer *, real *, real *, integer *); extern doublereal slamch_(char *); extern /* Subroutine */ int slaset_(char *, integer *, integer *, real *, real *, real *, integer *); static integer ldwork; extern doublereal slansy_(char *, char *, integer *, real *, integer *, real *); static char transu[1]; /* -- LAPACK test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= SORT01 checks that the matrix U is orthogonal by computing the ratio RESID = norm( I - U*U' ) / ( n * EPS ), if ROWCOL = 'R', or RESID = norm( I - U'*U ) / ( m * EPS ), if ROWCOL = 'C'. Alternatively, if there isn't sufficient workspace to form I - U*U' or I - U'*U, the ratio is computed as RESID = abs( I - U*U' ) / ( n * EPS ), if ROWCOL = 'R', or RESID = abs( I - U'*U ) / ( m * EPS ), if ROWCOL = 'C'. where EPS is the machine precision. ROWCOL is used only if m = n; if m > n, ROWCOL is assumed to be 'C', and if m < n, ROWCOL is assumed to be 'R'. Arguments ========= ROWCOL (input) CHARACTER Specifies whether the rows or columns of U should be checked for orthogonality. Used only if M = N. = 'R': Check for orthogonal rows of U = 'C': Check for orthogonal columns of U M (input) INTEGER The number of rows of the matrix U. N (input) INTEGER The number of columns of the matrix U. U (input) REAL array, dimension (LDU,N) The orthogonal matrix U. U is checked for orthogonal columns if m > n or if m = n and ROWCOL = 'C'. U is checked for orthogonal rows if m < n or if m = n and ROWCOL = 'R'. LDU (input) INTEGER The leading dimension of the array U. LDU >= max(1,M). WORK (workspace) REAL array, dimension (LWORK) LWORK (input) INTEGER The length of the array WORK. For best performance, LWORK should be at least N*(N+1) if ROWCOL = 'C' or M*(M+1) if ROWCOL = 'R', but the test will be done even if LWORK is 0. RESID (output) REAL RESID = norm( I - U * U' ) / ( n * EPS ), if ROWCOL = 'R', or RESID = norm( I - U' * U ) / ( m * EPS ), if ROWCOL = 'C'. ===================================================================== Parameter adjustments */ u_dim1 = *ldu; u_offset = 1 + u_dim1; u -= u_offset; --work; /* Function Body */ *resid = 0.f; /* Quick return if possible */ if (*m <= 0 || *n <= 0) { return 0; } eps = slamch_("Precision"); if (*m < *n || *m == *n && lsame_(rowcol, "R")) { *(unsigned char *)transu = 'N'; k = *n; } else { *(unsigned char *)transu = 'T'; k = *m; } mnmin = min(*m,*n); if ((mnmin + 1) * mnmin <= *lwork) { ldwork = mnmin; } else { ldwork = 0; } if (ldwork > 0) { /* Compute I - U*U' or I - U'*U. */ slaset_("Upper", &mnmin, &mnmin, &c_b7, &c_b8, &work[1], &ldwork); ssyrk_("Upper", transu, &mnmin, &k, &c_b10, &u[u_offset], ldu, &c_b8, &work[1], &ldwork); /* Compute norm( I - U*U' ) / ( K * EPS ) . */ *resid = slansy_("1", "Upper", &mnmin, &work[1], &ldwork, &work[ ldwork * mnmin + 1]); *resid = *resid / (real) k / eps; } else if (*(unsigned char *)transu == 'T') { /* Find the maximum element in abs( I - U'*U ) / ( m * EPS ) */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { if (i__ != j) { tmp = 0.f; } else { tmp = 1.f; } tmp -= sdot_(m, &u[i__ * u_dim1 + 1], &c__1, &u[j * u_dim1 + 1], &c__1); /* Computing MAX */ r__1 = *resid, r__2 = dabs(tmp); *resid = dmax(r__1,r__2); /* L10: */ } /* L20: */ } *resid = *resid / (real) (*m) / eps; } else { /* Find the maximum element in abs( I - U*U' ) / ( n * EPS ) */ i__1 = *m; for (j = 1; j <= i__1; ++j) { i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { if (i__ != j) { tmp = 0.f; } else { tmp = 1.f; } tmp -= sdot_(n, &u[j + u_dim1], ldu, &u[i__ + u_dim1], ldu); /* Computing MAX */ r__1 = *resid, r__2 = dabs(tmp); *resid = dmax(r__1,r__2); /* L30: */ } /* L40: */ } *resid = *resid / (real) (*n) / eps; } return 0; /* End of SORT01 */ } /* sort01_ */