#include "blaswrap.h" /* sdrvev.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static real c_b17 = 0.f; static integer c__0 = 0; static real c_b31 = 1.f; static integer c__4 = 4; static integer c__6 = 6; static integer c__1 = 1; static integer c__2 = 2; /* Subroutine */ int sdrvev_(integer *nsizes, integer *nn, integer *ntypes, logical *dotype, integer *iseed, real *thresh, integer *nounit, real * a, integer *lda, real *h__, real *wr, real *wi, real *wr1, real *wi1, real *vl, integer *ldvl, real *vr, integer *ldvr, real *lre, integer * ldlre, real *result, real *work, integer *nwork, integer *iwork, integer *info) { /* Initialized data */ static integer ktype[21] = { 1,2,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,9,9,9 }; static integer kmagn[21] = { 1,1,1,1,1,1,2,3,1,1,1,1,1,1,1,1,2,3,1,2,3 }; static integer kmode[21] = { 0,0,0,4,3,1,4,4,4,3,1,5,4,3,1,5,5,5,4,3,1 }; static integer kconds[21] = { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,0,0,0 }; /* Format strings */ static char fmt_9993[] = "(\002 SDRVEV: \002,a,\002 returned INFO=\002,i" "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED=" "(\002,3(i5,\002,\002),i5,\002)\002)"; static char fmt_9999[] = "(/1x,a3,\002 -- Real Eigenvalue-Eigenvector De" "composition\002,\002 Driver\002,/\002 Matrix types (see SDRVEV f" "or details): \002)"; static char fmt_9998[] = "(/\002 Special Matrices:\002,/\002 1=Zero mat" "rix. \002,\002 \002,\002 5=Diagonal: geom" "etr. spaced entries.\002,/\002 2=Identity matrix. " " \002,\002 6=Diagona\002,\002l: clustered entries.\002," "/\002 3=Transposed Jordan block. \002,\002 \002,\002 " " 7=Diagonal: large, evenly spaced.\002,/\002 \002,\0024=Diagona" "l: evenly spaced entries. \002,\002 8=Diagonal: s\002,\002ma" "ll, evenly spaced.\002)"; static char fmt_9997[] = "(\002 Dense, Non-Symmetric Matrices:\002,/\002" " 9=Well-cond., ev\002,\002enly spaced eigenvals.\002,\002 14=Il" "l-cond., geomet. spaced e\002,\002igenals.\002,/\002 10=Well-con" "d., geom. spaced eigenvals. \002,\002 15=Ill-conditioned, cluste" "red e.vals.\002,/\002 11=Well-cond\002,\002itioned, clustered e." "vals. \002,\002 16=Ill-cond., random comp\002,\002lex \002,/\002" " 12=Well-cond., random complex \002,6x,\002 \002,\002 17=Ill-c" "ond., large rand. complx \002,/\002 13=Ill-condi\002,\002tioned," " evenly spaced. \002,\002 18=Ill-cond., small rand.\002,\002" " complx \002)"; static char fmt_9996[] = "(\002 19=Matrix with random O(1) entries. " " \002,\002 21=Matrix \002,\002with small random entries.\002," "/\002 20=Matrix with large ran\002,\002dom entries. \002,/)"; static char fmt_9995[] = "(\002 Tests performed with test threshold =" "\002,f8.2,//\002 1 = | A VR - VR W | / ( n |A| ulp ) \002,/\002 " "2 = | transpose(A) VL - VL W | / ( n |A| ulp ) \002,/\002 3 = | " "|VR(i)| - 1 | / ulp \002,/\002 4 = | |VL(i)| - 1 | / ulp \002," "/\002 5 = 0 if W same no matter if VR or VL computed,\002,\002 1" "/ulp otherwise\002,/\002 6 = 0 if VR same no matter if VL comput" "ed,\002,\002 1/ulp otherwise\002,/\002 7 = 0 if VL same no matt" "er if VR computed,\002,\002 1/ulp otherwise\002,/)"; static char fmt_9994[] = "(\002 N=\002,i5,\002, IWK=\002,i2,\002, seed" "=\002,4(i4,\002,\002),\002 type \002,i2,\002, test(\002,i2,\002)=" "\002,g10.3)"; /* System generated locals */ integer a_dim1, a_offset, h_dim1, h_offset, lre_dim1, lre_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, i__2, i__3, i__4; real r__1, r__2, r__3, r__4, r__5; /* Builtin functions Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); double sqrt(doublereal); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ static integer j, n, jj; static real dum[1], res[2]; static integer iwk; static real ulp, vmx, cond; static integer jcol; static char path[3]; static integer nmax; static real unfl, ovfl, tnrm, vrmx, vtst; extern doublereal snrm2_(integer *, real *, integer *); static logical badnn; static integer nfail, imode, iinfo; static real conds; extern /* Subroutine */ int sget22_(char *, char *, char *, integer *, real *, integer *, real *, integer *, real *, real *, real *, real *), sgeev_(char *, char *, integer *, real *, integer *, real *, real *, real *, integer *, real *, integer *, real *, integer *, integer *); static real anorm; static integer jsize, nerrs, itype, jtype, ntest; static real rtulp; extern doublereal slapy2_(real *, real *); extern /* Subroutine */ int slabad_(real *, real *); static char adumma[1*1]; extern doublereal slamch_(char *); static integer idumma[1]; extern /* Subroutine */ int xerbla_(char *, integer *); static integer ioldsd[4]; extern /* Subroutine */ int slatme_(integer *, char *, integer *, real *, integer *, real *, real *, char *, char *, char *, char *, real *, integer *, real *, integer *, integer *, real *, real *, integer *, real *, integer *), slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *), slatmr_(integer *, integer *, char *, integer *, char *, real *, integer *, real *, real *, char *, char *, real *, integer *, real *, real *, integer *, real *, char *, integer *, integer *, integer *, real *, real *, char *, real *, integer *, integer *, integer *); static integer ntestf; extern /* Subroutine */ int slasum_(char *, integer *, integer *, integer *), slatms_(integer *, integer *, char *, integer *, char *, real *, integer *, real *, real *, integer *, integer *, char * , real *, integer *, real *, integer *); static real ulpinv; static integer nnwork; static real rtulpi; static integer mtypes, ntestt; /* Fortran I/O blocks */ static cilist io___32 = { 0, 0, 0, fmt_9993, 0 }; static cilist io___35 = { 0, 0, 0, fmt_9993, 0 }; static cilist io___43 = { 0, 0, 0, fmt_9993, 0 }; static cilist io___44 = { 0, 0, 0, fmt_9993, 0 }; static cilist io___45 = { 0, 0, 0, fmt_9993, 0 }; static cilist io___48 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___49 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___50 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___51 = { 0, 0, 0, fmt_9996, 0 }; static cilist io___52 = { 0, 0, 0, fmt_9995, 0 }; static cilist io___53 = { 0, 0, 0, fmt_9994, 0 }; /* -- LAPACK test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= SDRVEV checks the nonsymmetric eigenvalue problem driver SGEEV. When SDRVEV is called, a number of matrix "sizes" ("n's") and a number of matrix "types" are specified. For each size ("n") and each type of matrix, one matrix will be generated and used to test the nonsymmetric eigenroutines. For each matrix, 7 tests will be performed: (1) | A * VR - VR * W | / ( n |A| ulp ) Here VR is the matrix of unit right eigenvectors. W is a block diagonal matrix, with a 1x1 block for each real eigenvalue and a 2x2 block for each complex conjugate pair. If eigenvalues j and j+1 are a complex conjugate pair, so WR(j) = WR(j+1) = wr and WI(j) = - WI(j+1) = wi, then the 2 x 2 block corresponding to the pair will be: ( wr wi ) ( -wi wr ) Such a block multiplying an n x 2 matrix ( ur ui ) on the right will be the same as multiplying ur + i*ui by wr + i*wi. (2) | A**H * VL - VL * W**H | / ( n |A| ulp ) Here VL is the matrix of unit left eigenvectors, A**H is the conjugate transpose of A, and W is as above. (3) | |VR(i)| - 1 | / ulp and whether largest component real VR(i) denotes the i-th column of VR. (4) | |VL(i)| - 1 | / ulp and whether largest component real VL(i) denotes the i-th column of VL. (5) W(full) = W(partial) W(full) denotes the eigenvalues computed when both VR and VL are also computed, and W(partial) denotes the eigenvalues computed when only W, only W and VR, or only W and VL are computed. (6) VR(full) = VR(partial) VR(full) denotes the right eigenvectors computed when both VR and VL are computed, and VR(partial) denotes the result when only VR is computed. (7) VL(full) = VL(partial) VL(full) denotes the left eigenvectors computed when both VR and VL are also computed, and VL(partial) denotes the result when only VL is computed. The "sizes" are specified by an array NN(1:NSIZES); the value of each element NN(j) specifies one size. The "types" are specified by a logical array DOTYPE( 1:NTYPES ); if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. Currently, the list of possible types is: (1) The zero matrix. (2) The identity matrix. (3) A (transposed) Jordan block, with 1's on the diagonal. (4) A diagonal matrix with evenly spaced entries 1, ..., ULP and random signs. (ULP = (first number larger than 1) - 1 ) (5) A diagonal matrix with geometrically spaced entries 1, ..., ULP and random signs. (6) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP and random signs. (7) Same as (4), but multiplied by a constant near the overflow threshold (8) Same as (4), but multiplied by a constant near the underflow threshold (9) A matrix of the form U' T U, where U is orthogonal and T has evenly spaced entries 1, ..., ULP with random signs on the diagonal and random O(1) entries in the upper triangle. (10) A matrix of the form U' T U, where U is orthogonal and T has geometrically spaced entries 1, ..., ULP with random signs on the diagonal and random O(1) entries in the upper triangle. (11) A matrix of the form U' T U, where U is orthogonal and T has "clustered" entries 1, ULP,..., ULP with random signs on the diagonal and random O(1) entries in the upper triangle. (12) A matrix of the form U' T U, where U is orthogonal and T has real or complex conjugate paired eigenvalues randomly chosen from ( ULP, 1 ) and random O(1) entries in the upper triangle. (13) A matrix of the form X' T X, where X has condition SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP with random signs on the diagonal and random O(1) entries in the upper triangle. (14) A matrix of the form X' T X, where X has condition SQRT( ULP ) and T has geometrically spaced entries 1, ..., ULP with random signs on the diagonal and random O(1) entries in the upper triangle. (15) A matrix of the form X' T X, where X has condition SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP with random signs on the diagonal and random O(1) entries in the upper triangle. (16) A matrix of the form X' T X, where X has condition SQRT( ULP ) and T has real or complex conjugate paired eigenvalues randomly chosen from ( ULP, 1 ) and random O(1) entries in the upper triangle. (17) Same as (16), but multiplied by a constant near the overflow threshold (18) Same as (16), but multiplied by a constant near the underflow threshold (19) Nonsymmetric matrix with random entries chosen from (-1,1). If N is at least 4, all entries in first two rows and last row, and first column and last two columns are zero. (20) Same as (19), but multiplied by a constant near the overflow threshold (21) Same as (19), but multiplied by a constant near the underflow threshold Arguments ========== NSIZES (input) INTEGER The number of sizes of matrices to use. If it is zero, SDRVEV does nothing. It must be at least zero. NN (input) INTEGER array, dimension (NSIZES) An array containing the sizes to be used for the matrices. Zero values will be skipped. The values must be at least zero. NTYPES (input) INTEGER The number of elements in DOTYPE. If it is zero, SDRVEV does nothing. It must be at least zero. If it is MAXTYP+1 and NSIZES is 1, then an additional type, MAXTYP+1 is defined, which is to use whatever matrix is in A. This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. . DOTYPE (input) LOGICAL array, dimension (NTYPES) If DOTYPE(j) is .TRUE., then for each size in NN a matrix of that size and of type j will be generated. If NTYPES is smaller than the maximum number of types defined (PARAMETER MAXTYP), then types NTYPES+1 through MAXTYP will not be generated. If NTYPES is larger than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) will be ignored. ISEED (input/output) INTEGER array, dimension (4) On entry ISEED specifies the seed of the random number generator. The array elements should be between 0 and 4095; if not they will be reduced mod 4096. Also, ISEED(4) must be odd. The random number generator uses a linear congruential sequence limited to small integers, and so should produce machine independent random numbers. The values of ISEED are changed on exit, and can be used in the next call to SDRVEV to continue the same random number sequence. THRESH (input) REAL A test will count as "failed" if the "error", computed as described above, exceeds THRESH. Note that the error is scaled to be O(1), so THRESH should be a reasonably small multiple of 1, e.g., 10 or 100. In particular, it should not depend on the precision (single vs. double) or the size of the matrix. It must be at least zero. NOUNIT (input) INTEGER The FORTRAN unit number for printing out error messages (e.g., if a routine returns INFO not equal to 0.) A (workspace) REAL array, dimension (LDA, max(NN)) Used to hold the matrix whose eigenvalues are to be computed. On exit, A contains the last matrix actually used. LDA (input) INTEGER The leading dimension of A, and H. LDA must be at least 1 and at least max(NN). H (workspace) REAL array, dimension (LDA, max(NN)) Another copy of the test matrix A, modified by SGEEV. WR (workspace) REAL array, dimension (max(NN)) WI (workspace) REAL array, dimension (max(NN)) The real and imaginary parts of the eigenvalues of A. On exit, WR + WI*i are the eigenvalues of the matrix in A. WR1 (workspace) REAL array, dimension (max(NN)) WI1 (workspace) REAL array, dimension (max(NN)) Like WR, WI, these arrays contain the eigenvalues of A, but those computed when SGEEV only computes a partial eigendecomposition, i.e. not the eigenvalues and left and right eigenvectors. VL (workspace) REAL array, dimension (LDVL, max(NN)) VL holds the computed left eigenvectors. LDVL (input) INTEGER Leading dimension of VL. Must be at least max(1,max(NN)). VR (workspace) REAL array, dimension (LDVR, max(NN)) VR holds the computed right eigenvectors. LDVR (input) INTEGER Leading dimension of VR. Must be at least max(1,max(NN)). LRE (workspace) REAL array, dimension (LDLRE,max(NN)) LRE holds the computed right or left eigenvectors. LDLRE (input) INTEGER Leading dimension of LRE. Must be at least max(1,max(NN)). RESULT (output) REAL array, dimension (7) The values computed by the seven tests described above. The values are currently limited to 1/ulp, to avoid overflow. WORK (workspace) REAL array, dimension (NWORK) NWORK (input) INTEGER The number of entries in WORK. This must be at least 5*NN(j)+2*NN(j)**2 for all j. IWORK (workspace) INTEGER array, dimension (max(NN)) INFO (output) INTEGER If 0, then everything ran OK. -1: NSIZES < 0 -2: Some NN(j) < 0 -3: NTYPES < 0 -6: THRESH < 0 -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). -16: LDVL < 1 or LDVL < NMAX, where NMAX is max( NN(j) ). -18: LDVR < 1 or LDVR < NMAX, where NMAX is max( NN(j) ). -20: LDLRE < 1 or LDLRE < NMAX, where NMAX is max( NN(j) ). -23: NWORK too small. If SLATMR, SLATMS, SLATME or SGEEV returns an error code, the absolute value of it is returned. ----------------------------------------------------------------------- Some Local Variables and Parameters: ---- ----- --------- --- ---------- ZERO, ONE Real 0 and 1. MAXTYP The number of types defined. NMAX Largest value in NN. NERRS The number of tests which have exceeded THRESH COND, CONDS, IMODE Values to be passed to the matrix generators. ANORM Norm of A; passed to matrix generators. OVFL, UNFL Overflow and underflow thresholds. ULP, ULPINV Finest relative precision and its inverse. RTULP, RTULPI Square roots of the previous 4 values. The following four arrays decode JTYPE: KTYPE(j) The general type (1-10) for type "j". KMODE(j) The MODE value to be passed to the matrix generator for type "j". KMAGN(j) The order of magnitude ( O(1), O(overflow^(1/2) ), O(underflow^(1/2) ) KCONDS(j) Selectw whether CONDS is to be 1 or 1/sqrt(ulp). (0 means irrelevant.) ===================================================================== Parameter adjustments */ --nn; --dotype; --iseed; h_dim1 = *lda; h_offset = 1 + h_dim1; h__ -= h_offset; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --wr; --wi; --wr1; --wi1; vl_dim1 = *ldvl; vl_offset = 1 + vl_dim1; vl -= vl_offset; vr_dim1 = *ldvr; vr_offset = 1 + vr_dim1; vr -= vr_offset; lre_dim1 = *ldlre; lre_offset = 1 + lre_dim1; lre -= lre_offset; --result; --work; --iwork; /* Function Body */ s_copy(path, "Single precision", (ftnlen)1, (ftnlen)16); s_copy(path + 1, "EV", (ftnlen)2, (ftnlen)2); /* Check for errors */ ntestt = 0; ntestf = 0; *info = 0; /* Important constants */ badnn = FALSE_; nmax = 0; i__1 = *nsizes; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ i__2 = nmax, i__3 = nn[j]; nmax = max(i__2,i__3); if (nn[j] < 0) { badnn = TRUE_; } /* L10: */ } /* Check for errors */ if (*nsizes < 0) { *info = -1; } else if (badnn) { *info = -2; } else if (*ntypes < 0) { *info = -3; } else if (*thresh < 0.f) { *info = -6; } else if (*nounit <= 0) { *info = -7; } else if (*lda < 1 || *lda < nmax) { *info = -9; } else if (*ldvl < 1 || *ldvl < nmax) { *info = -16; } else if (*ldvr < 1 || *ldvr < nmax) { *info = -18; } else if (*ldlre < 1 || *ldlre < nmax) { *info = -20; } else /* if(complicated condition) */ { /* Computing 2nd power */ i__1 = nmax; if (nmax * 5 + (i__1 * i__1 << 1) > *nwork) { *info = -23; } } if (*info != 0) { i__1 = -(*info); xerbla_("SDRVEV", &i__1); return 0; } /* Quick return if nothing to do */ if (*nsizes == 0 || *ntypes == 0) { return 0; } /* More Important constants */ unfl = slamch_("Safe minimum"); ovfl = 1.f / unfl; slabad_(&unfl, &ovfl); ulp = slamch_("Precision"); ulpinv = 1.f / ulp; rtulp = sqrt(ulp); rtulpi = 1.f / rtulp; /* Loop over sizes, types */ nerrs = 0; i__1 = *nsizes; for (jsize = 1; jsize <= i__1; ++jsize) { n = nn[jsize]; if (*nsizes != 1) { mtypes = min(21,*ntypes); } else { mtypes = min(22,*ntypes); } i__2 = mtypes; for (jtype = 1; jtype <= i__2; ++jtype) { if (! dotype[jtype]) { goto L260; } /* Save ISEED in case of an error. */ for (j = 1; j <= 4; ++j) { ioldsd[j - 1] = iseed[j]; /* L20: */ } /* Compute "A" Control parameters: KMAGN KCONDS KMODE KTYPE =1 O(1) 1 clustered 1 zero =2 large large clustered 2 identity =3 small exponential Jordan =4 arithmetic diagonal, (w/ eigenvalues) =5 random log symmetric, w/ eigenvalues =6 random general, w/ eigenvalues =7 random diagonal =8 random symmetric =9 random general =10 random triangular */ if (mtypes > 21) { goto L90; } itype = ktype[jtype - 1]; imode = kmode[jtype - 1]; /* Compute norm */ switch (kmagn[jtype - 1]) { case 1: goto L30; case 2: goto L40; case 3: goto L50; } L30: anorm = 1.f; goto L60; L40: anorm = ovfl * ulp; goto L60; L50: anorm = unfl * ulpinv; goto L60; L60: slaset_("Full", lda, &n, &c_b17, &c_b17, &a[a_offset], lda); iinfo = 0; cond = ulpinv; /* Special Matrices -- Identity & Jordan block Zero */ if (itype == 1) { iinfo = 0; } else if (itype == 2) { /* Identity */ i__3 = n; for (jcol = 1; jcol <= i__3; ++jcol) { a[jcol + jcol * a_dim1] = anorm; /* L70: */ } } else if (itype == 3) { /* Jordan Block */ i__3 = n; for (jcol = 1; jcol <= i__3; ++jcol) { a[jcol + jcol * a_dim1] = anorm; if (jcol > 1) { a[jcol + (jcol - 1) * a_dim1] = 1.f; } /* L80: */ } } else if (itype == 4) { /* Diagonal Matrix, [Eigen]values Specified */ slatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, &anorm, &c__0, &c__0, "N", &a[a_offset], lda, &work[n + 1], &iinfo); } else if (itype == 5) { /* Symmetric, eigenvalues specified */ slatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, &anorm, &n, &n, "N", &a[a_offset], lda, &work[n + 1], &iinfo); } else if (itype == 6) { /* General, eigenvalues specified */ if (kconds[jtype - 1] == 1) { conds = 1.f; } else if (kconds[jtype - 1] == 2) { conds = rtulpi; } else { conds = 0.f; } *(unsigned char *)&adumma[0] = ' '; slatme_(&n, "S", &iseed[1], &work[1], &imode, &cond, &c_b31, adumma, "T", "T", "T", &work[n + 1], &c__4, &conds, & n, &n, &anorm, &a[a_offset], lda, &work[(n << 1) + 1], &iinfo); } else if (itype == 7) { /* Diagonal, random eigenvalues */ slatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &c_b31, &c_b31, "T", "N", &work[n + 1], &c__1, &c_b31, &work[( n << 1) + 1], &c__1, &c_b31, "N", idumma, &c__0, & c__0, &c_b17, &anorm, "NO", &a[a_offset], lda, &iwork[ 1], &iinfo); } else if (itype == 8) { /* Symmetric, random eigenvalues */ slatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &c_b31, &c_b31, "T", "N", &work[n + 1], &c__1, &c_b31, &work[( n << 1) + 1], &c__1, &c_b31, "N", idumma, &n, &n, & c_b17, &anorm, "NO", &a[a_offset], lda, &iwork[1], & iinfo); } else if (itype == 9) { /* General, random eigenvalues */ slatmr_(&n, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b31, &c_b31, "T", "N", &work[n + 1], &c__1, &c_b31, &work[( n << 1) + 1], &c__1, &c_b31, "N", idumma, &n, &n, & c_b17, &anorm, "NO", &a[a_offset], lda, &iwork[1], & iinfo); if (n >= 4) { slaset_("Full", &c__2, &n, &c_b17, &c_b17, &a[a_offset], lda); i__3 = n - 3; slaset_("Full", &i__3, &c__1, &c_b17, &c_b17, &a[a_dim1 + 3], lda); i__3 = n - 3; slaset_("Full", &i__3, &c__2, &c_b17, &c_b17, &a[(n - 1) * a_dim1 + 3], lda); slaset_("Full", &c__1, &n, &c_b17, &c_b17, &a[n + a_dim1], lda); } } else if (itype == 10) { /* Triangular, random eigenvalues */ slatmr_(&n, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b31, &c_b31, "T", "N", &work[n + 1], &c__1, &c_b31, &work[( n << 1) + 1], &c__1, &c_b31, "N", idumma, &n, &c__0, & c_b17, &anorm, "NO", &a[a_offset], lda, &iwork[1], & iinfo); } else { iinfo = 1; } if (iinfo != 0) { io___32.ciunit = *nounit; s_wsfe(&io___32); do_fio(&c__1, "Generator", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); return 0; } L90: /* Test for minimal and generous workspace */ for (iwk = 1; iwk <= 2; ++iwk) { if (iwk == 1) { nnwork = n << 2; } else { /* Computing 2nd power */ i__3 = n; nnwork = n * 5 + (i__3 * i__3 << 1); } nnwork = max(nnwork,1); /* Initialize RESULT */ for (j = 1; j <= 7; ++j) { result[j] = -1.f; /* L100: */ } /* Compute eigenvalues and eigenvectors, and test them */ slacpy_("F", &n, &n, &a[a_offset], lda, &h__[h_offset], lda); sgeev_("V", "V", &n, &h__[h_offset], lda, &wr[1], &wi[1], &vl[ vl_offset], ldvl, &vr[vr_offset], ldvr, &work[1], & nnwork, &iinfo); if (iinfo != 0) { result[1] = ulpinv; io___35.ciunit = *nounit; s_wsfe(&io___35); do_fio(&c__1, "SGEEV1", (ftnlen)6); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; e_wsfe(); *info = abs(iinfo); goto L220; } /* Do Test (1) */ sget22_("N", "N", "N", &n, &a[a_offset], lda, &vr[vr_offset], ldvr, &wr[1], &wi[1], &work[1], res); result[1] = res[0]; /* Do Test (2) */ sget22_("T", "N", "T", &n, &a[a_offset], lda, &vl[vl_offset], ldvl, &wr[1], &wi[1], &work[1], res); result[2] = res[0]; /* Do Test (3) */ i__3 = n; for (j = 1; j <= i__3; ++j) { tnrm = 1.f; if (wi[j] == 0.f) { tnrm = snrm2_(&n, &vr[j * vr_dim1 + 1], &c__1); } else if (wi[j] > 0.f) { r__1 = snrm2_(&n, &vr[j * vr_dim1 + 1], &c__1); r__2 = snrm2_(&n, &vr[(j + 1) * vr_dim1 + 1], &c__1); tnrm = slapy2_(&r__1, &r__2); } /* Computing MAX Computing MIN */ r__4 = ulpinv, r__5 = (r__1 = tnrm - 1.f, dabs(r__1)) / ulp; r__2 = result[3], r__3 = dmin(r__4,r__5); result[3] = dmax(r__2,r__3); if (wi[j] > 0.f) { vmx = 0.f; vrmx = 0.f; i__4 = n; for (jj = 1; jj <= i__4; ++jj) { vtst = slapy2_(&vr[jj + j * vr_dim1], &vr[jj + (j + 1) * vr_dim1]); if (vtst > vmx) { vmx = vtst; } if (vr[jj + (j + 1) * vr_dim1] == 0.f && (r__1 = vr[jj + j * vr_dim1], dabs(r__1)) > vrmx) { vrmx = (r__2 = vr[jj + j * vr_dim1], dabs( r__2)); } /* L110: */ } if (vrmx / vmx < 1.f - ulp * 2.f) { result[3] = ulpinv; } } /* L120: */ } /* Do Test (4) */ i__3 = n; for (j = 1; j <= i__3; ++j) { tnrm = 1.f; if (wi[j] == 0.f) { tnrm = snrm2_(&n, &vl[j * vl_dim1 + 1], &c__1); } else if (wi[j] > 0.f) { r__1 = snrm2_(&n, &vl[j * vl_dim1 + 1], &c__1); r__2 = snrm2_(&n, &vl[(j + 1) * vl_dim1 + 1], &c__1); tnrm = slapy2_(&r__1, &r__2); } /* Computing MAX Computing MIN */ r__4 = ulpinv, r__5 = (r__1 = tnrm - 1.f, dabs(r__1)) / ulp; r__2 = result[4], r__3 = dmin(r__4,r__5); result[4] = dmax(r__2,r__3); if (wi[j] > 0.f) { vmx = 0.f; vrmx = 0.f; i__4 = n; for (jj = 1; jj <= i__4; ++jj) { vtst = slapy2_(&vl[jj + j * vl_dim1], &vl[jj + (j + 1) * vl_dim1]); if (vtst > vmx) { vmx = vtst; } if (vl[jj + (j + 1) * vl_dim1] == 0.f && (r__1 = vl[jj + j * vl_dim1], dabs(r__1)) > vrmx) { vrmx = (r__2 = vl[jj + j * vl_dim1], dabs( r__2)); } /* L130: */ } if (vrmx / vmx < 1.f - ulp * 2.f) { result[4] = ulpinv; } } /* L140: */ } /* Compute eigenvalues only, and test them */ slacpy_("F", &n, &n, &a[a_offset], lda, &h__[h_offset], lda); sgeev_("N", "N", &n, &h__[h_offset], lda, &wr1[1], &wi1[1], dum, &c__1, dum, &c__1, &work[1], &nnwork, &iinfo); if (iinfo != 0) { result[1] = ulpinv; io___43.ciunit = *nounit; s_wsfe(&io___43); do_fio(&c__1, "SGEEV2", (ftnlen)6); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; e_wsfe(); *info = abs(iinfo); goto L220; } /* Do Test (5) */ i__3 = n; for (j = 1; j <= i__3; ++j) { if (wr[j] != wr1[j] || wi[j] != wi1[j]) { result[5] = ulpinv; } /* L150: */ } /* Compute eigenvalues and right eigenvectors, and test them */ slacpy_("F", &n, &n, &a[a_offset], lda, &h__[h_offset], lda); sgeev_("N", "V", &n, &h__[h_offset], lda, &wr1[1], &wi1[1], dum, &c__1, &lre[lre_offset], ldlre, &work[1], & nnwork, &iinfo); if (iinfo != 0) { result[1] = ulpinv; io___44.ciunit = *nounit; s_wsfe(&io___44); do_fio(&c__1, "SGEEV3", (ftnlen)6); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; e_wsfe(); *info = abs(iinfo); goto L220; } /* Do Test (5) again */ i__3 = n; for (j = 1; j <= i__3; ++j) { if (wr[j] != wr1[j] || wi[j] != wi1[j]) { result[5] = ulpinv; } /* L160: */ } /* Do Test (6) */ i__3 = n; for (j = 1; j <= i__3; ++j) { i__4 = n; for (jj = 1; jj <= i__4; ++jj) { if (vr[j + jj * vr_dim1] != lre[j + jj * lre_dim1]) { result[6] = ulpinv; } /* L170: */ } /* L180: */ } /* Compute eigenvalues and left eigenvectors, and test them */ slacpy_("F", &n, &n, &a[a_offset], lda, &h__[h_offset], lda); sgeev_("V", "N", &n, &h__[h_offset], lda, &wr1[1], &wi1[1], & lre[lre_offset], ldlre, dum, &c__1, &work[1], &nnwork, &iinfo); if (iinfo != 0) { result[1] = ulpinv; io___45.ciunit = *nounit; s_wsfe(&io___45); do_fio(&c__1, "SGEEV4", (ftnlen)6); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; e_wsfe(); *info = abs(iinfo); goto L220; } /* Do Test (5) again */ i__3 = n; for (j = 1; j <= i__3; ++j) { if (wr[j] != wr1[j] || wi[j] != wi1[j]) { result[5] = ulpinv; } /* L190: */ } /* Do Test (7) */ i__3 = n; for (j = 1; j <= i__3; ++j) { i__4 = n; for (jj = 1; jj <= i__4; ++jj) { if (vl[j + jj * vl_dim1] != lre[j + jj * lre_dim1]) { result[7] = ulpinv; } /* L200: */ } /* L210: */ } /* End of Loop -- Check for RESULT(j) > THRESH */ L220: ntest = 0; nfail = 0; for (j = 1; j <= 7; ++j) { if (result[j] >= 0.f) { ++ntest; } if (result[j] >= *thresh) { ++nfail; } /* L230: */ } if (nfail > 0) { ++ntestf; } if (ntestf == 1) { io___48.ciunit = *nounit; s_wsfe(&io___48); do_fio(&c__1, path, (ftnlen)3); e_wsfe(); io___49.ciunit = *nounit; s_wsfe(&io___49); e_wsfe(); io___50.ciunit = *nounit; s_wsfe(&io___50); e_wsfe(); io___51.ciunit = *nounit; s_wsfe(&io___51); e_wsfe(); io___52.ciunit = *nounit; s_wsfe(&io___52); do_fio(&c__1, (char *)&(*thresh), (ftnlen)sizeof(real)); e_wsfe(); ntestf = 2; } for (j = 1; j <= 7; ++j) { if (result[j] >= *thresh) { io___53.ciunit = *nounit; s_wsfe(&io___53); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&iwk, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[j], (ftnlen)sizeof(real) ); e_wsfe(); } /* L240: */ } nerrs += nfail; ntestt += ntest; /* L250: */ } L260: ; } /* L270: */ } /* Summary */ slasum_(path, nounit, &nerrs, &ntestt); return 0; /* End of SDRVEV */ } /* sdrvev_ */