#include "blaswrap.h" /* dlatb9.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__3 = 3; /* Subroutine */ int dlatb9_(char *path, integer *imat, integer *m, integer * p, integer *n, char *type__, integer *kla, integer *kua, integer *klb, integer *kub, doublereal *anorm, doublereal *bnorm, integer *modea, integer *modeb, doublereal *cndnma, doublereal *cndnmb, char *dista, char *distb) { /* Initialized data */ static logical first = TRUE_; /* System generated locals */ integer i__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ static doublereal eps, badc1, badc2, large, small; extern /* Subroutine */ int dlabad_(doublereal *, doublereal *); extern doublereal dlamch_(char *); extern logical lsamen_(integer *, char *, char *); /* -- LAPACK test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= DLATB9 sets parameters for the matrix generator based on the type of matrix to be generated. Arguments ========= PATH (input) CHARACTER*3 The LAPACK path name. IMAT (input) INTEGER An integer key describing which matrix to generate for this path. M (input) INTEGER The number of rows in the matrix to be generated. N (input) INTEGER The number of columns in the matrix to be generated. TYPE (output) CHARACTER*1 The type of the matrix to be generated: = 'S': symmetric matrix; = 'P': symmetric positive (semi)definite matrix; = 'N': nonsymmetric matrix. KL (output) INTEGER The lower band width of the matrix to be generated. KU (output) INTEGER The upper band width of the matrix to be generated. ANORM (output) DOUBLE PRECISION The desired norm of the matrix to be generated. The diagonal matrix of singular values or eigenvalues is scaled by this value. MODE (output) INTEGER A key indicating how to choose the vector of eigenvalues. CNDNUM (output) DOUBLE PRECISION The desired condition number. DIST (output) CHARACTER*1 The type of distribution to be used by the random number generator. ===================================================================== Set some constants for use in the subroutine. */ if (first) { first = FALSE_; eps = dlamch_("Precision"); badc2 = .1 / eps; badc1 = sqrt(badc2); small = dlamch_("Safe minimum"); large = 1. / small; /* If it looks like we're on a Cray, take the square root of SMALL and LARGE to avoid overflow and underflow problems. */ dlabad_(&small, &large); small = small / eps * .25; large = 1. / small; } /* Set some parameters we don't plan to change. */ *(unsigned char *)type__ = 'N'; *(unsigned char *)dista = 'S'; *(unsigned char *)distb = 'S'; *modea = 3; *modeb = 4; /* Set the lower and upper bandwidths. */ if (lsamen_(&c__3, path, "GRQ") || lsamen_(&c__3, path, "LSE") || lsamen_(&c__3, path, "GSV")) { /* A: M by N, B: P by N */ if (*imat == 1) { /* A: diagonal, B: upper triangular */ *kla = 0; *kua = 0; *klb = 0; /* Computing MAX */ i__1 = *n - 1; *kub = max(i__1,0); } else if (*imat == 2) { /* A: upper triangular, B: upper triangular */ *kla = 0; /* Computing MAX */ i__1 = *n - 1; *kua = max(i__1,0); *klb = 0; /* Computing MAX */ i__1 = *n - 1; *kub = max(i__1,0); } else if (*imat == 3) { /* A: lower triangular, B: upper triangular Computing MAX */ i__1 = *m - 1; *kla = max(i__1,0); *kua = 0; *klb = 0; /* Computing MAX */ i__1 = *n - 1; *kub = max(i__1,0); } else { /* A: general dense, B: general dense Computing MAX */ i__1 = *m - 1; *kla = max(i__1,0); /* Computing MAX */ i__1 = *n - 1; *kua = max(i__1,0); /* Computing MAX */ i__1 = *p - 1; *klb = max(i__1,0); /* Computing MAX */ i__1 = *n - 1; *kub = max(i__1,0); } } else if (lsamen_(&c__3, path, "GQR") || lsamen_(& c__3, path, "GLM")) { /* A: N by M, B: N by P */ if (*imat == 1) { /* A: diagonal, B: lower triangular */ *kla = 0; *kua = 0; /* Computing MAX */ i__1 = *n - 1; *klb = max(i__1,0); *kub = 0; } else if (*imat == 2) { /* A: lower triangular, B: diagonal Computing MAX */ i__1 = *n - 1; *kla = max(i__1,0); *kua = 0; *klb = 0; *kub = 0; } else if (*imat == 3) { /* A: lower triangular, B: upper triangular Computing MAX */ i__1 = *n - 1; *kla = max(i__1,0); *kua = 0; *klb = 0; /* Computing MAX */ i__1 = *p - 1; *kub = max(i__1,0); } else { /* A: general dense, B: general dense Computing MAX */ i__1 = *n - 1; *kla = max(i__1,0); /* Computing MAX */ i__1 = *m - 1; *kua = max(i__1,0); /* Computing MAX */ i__1 = *n - 1; *klb = max(i__1,0); /* Computing MAX */ i__1 = *p - 1; *kub = max(i__1,0); } } /* Set the condition number and norm. */ *cndnma = 100.; *cndnmb = 10.; if (lsamen_(&c__3, path, "GQR") || lsamen_(&c__3, path, "GRQ") || lsamen_(&c__3, path, "GSV")) { if (*imat == 5) { *cndnma = badc1; *cndnmb = badc1; } else if (*imat == 6) { *cndnma = badc2; *cndnmb = badc2; } else if (*imat == 7) { *cndnma = badc1; *cndnmb = badc2; } else if (*imat == 8) { *cndnma = badc2; *cndnmb = badc1; } } *anorm = 10.; *bnorm = 1e3; if (lsamen_(&c__3, path, "GQR") || lsamen_(&c__3, path, "GRQ")) { if (*imat == 7) { *anorm = small; *bnorm = large; } else if (*imat == 8) { *anorm = large; *bnorm = small; } } if (*n <= 1) { *cndnma = 1.; *cndnmb = 1.; } return 0; /* End of DLATB9 */ } /* dlatb9_ */