#include "blaswrap.h" /* cget35.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__3 = 3; static integer c__1 = 1; static integer c__6 = 6; static integer c__10 = 10; static complex c_b43 = {1.f,0.f}; /* Subroutine */ int cget35_(real *rmax, integer *lmax, integer *ninfo, integer *knt, integer *nin) { /* System generated locals */ integer i__1, i__2, i__3, i__4, i__5; real r__1, r__2; complex q__1; /* Builtin functions */ double sqrt(doublereal); integer s_rsle(cilist *), do_lio(integer *, integer *, char *, ftnlen), e_rsle(void); double c_abs(complex *); void c_div(complex *, complex *, complex *); /* Local variables */ static complex a[100] /* was [10][10] */, b[100] /* was [10][ 10] */, c__[100] /* was [10][10] */; static integer i__, j, m, n; static real vm1[3], vm2[3], dum[1], eps, res, res1; static integer imla, imlb, imlc, info; static complex csav[100] /* was [10][10] */; static integer isgn; static complex atmp[100] /* was [10][10] */, btmp[100] /* was [10][ 10] */, ctmp[100] /* was [10][10] */; static real tnrm; static complex rmul; static real xnrm; static integer imlad; static real scale; extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, complex *, integer *); static char trana[1], tranb[1]; extern /* Subroutine */ int slabad_(real *, real *); extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *), slamch_(char *); static integer itrana, itranb; static real bignum, smlnum; extern /* Subroutine */ int ctrsyl_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, real *, integer *); /* Fortran I/O blocks */ static cilist io___6 = { 0, 0, 0, 0, 0 }; static cilist io___10 = { 0, 0, 0, 0, 0 }; static cilist io___13 = { 0, 0, 0, 0, 0 }; static cilist io___15 = { 0, 0, 0, 0, 0 }; /* -- LAPACK test routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= CGET35 tests CTRSYL, a routine for solving the Sylvester matrix equation op(A)*X + ISGN*X*op(B) = scale*C, A and B are assumed to be in Schur canonical form, op() represents an optional transpose, and ISGN can be -1 or +1. Scale is an output less than or equal to 1, chosen to avoid overflow in X. The test code verifies that the following residual is order 1: norm(op(A)*X + ISGN*X*op(B) - scale*C) / (EPS*max(norm(A),norm(B))*norm(X)) Arguments ========== RMAX (output) REAL Value of the largest test ratio. LMAX (output) INTEGER Example number where largest test ratio achieved. NINFO (output) INTEGER Number of examples where INFO is nonzero. KNT (output) INTEGER Total number of examples tested. NIN (input) INTEGER Input logical unit number. ===================================================================== Get machine parameters */ eps = slamch_("P"); smlnum = slamch_("S") / eps; bignum = 1.f / smlnum; slabad_(&smlnum, &bignum); /* Set up test case parameters */ vm1[0] = sqrt(smlnum); vm1[1] = 1.f; vm1[2] = 1e6f; vm2[0] = 1.f; vm2[1] = eps * 2.f + 1.f; vm2[2] = 2.f; *knt = 0; *ninfo = 0; *lmax = 0; *rmax = 0.f; /* Begin test loop */ L10: io___6.ciunit = *nin; s_rsle(&io___6); do_lio(&c__3, &c__1, (char *)&m, (ftnlen)sizeof(integer)); do_lio(&c__3, &c__1, (char *)&n, (ftnlen)sizeof(integer)); e_rsle(); if (n == 0) { return 0; } i__1 = m; for (i__ = 1; i__ <= i__1; ++i__) { io___10.ciunit = *nin; s_rsle(&io___10); i__2 = m; for (j = 1; j <= i__2; ++j) { do_lio(&c__6, &c__1, (char *)&atmp[i__ + j * 10 - 11], (ftnlen) sizeof(complex)); } e_rsle(); /* L20: */ } i__1 = n; for (i__ = 1; i__ <= i__1; ++i__) { io___13.ciunit = *nin; s_rsle(&io___13); i__2 = n; for (j = 1; j <= i__2; ++j) { do_lio(&c__6, &c__1, (char *)&btmp[i__ + j * 10 - 11], (ftnlen) sizeof(complex)); } e_rsle(); /* L30: */ } i__1 = m; for (i__ = 1; i__ <= i__1; ++i__) { io___15.ciunit = *nin; s_rsle(&io___15); i__2 = n; for (j = 1; j <= i__2; ++j) { do_lio(&c__6, &c__1, (char *)&ctmp[i__ + j * 10 - 11], (ftnlen) sizeof(complex)); } e_rsle(); /* L40: */ } for (imla = 1; imla <= 3; ++imla) { for (imlad = 1; imlad <= 3; ++imlad) { for (imlb = 1; imlb <= 3; ++imlb) { for (imlc = 1; imlc <= 3; ++imlc) { for (itrana = 1; itrana <= 2; ++itrana) { for (itranb = 1; itranb <= 2; ++itranb) { for (isgn = -1; isgn <= 1; isgn += 2) { if (itrana == 1) { *(unsigned char *)trana = 'N'; } if (itrana == 2) { *(unsigned char *)trana = 'C'; } if (itranb == 1) { *(unsigned char *)tranb = 'N'; } if (itranb == 2) { *(unsigned char *)tranb = 'C'; } tnrm = 0.f; i__1 = m; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = m; for (j = 1; j <= i__2; ++j) { i__3 = i__ + j * 10 - 11; i__4 = i__ + j * 10 - 11; i__5 = imla - 1; q__1.r = vm1[i__5] * atmp[i__4].r, q__1.i = vm1[i__5] * atmp[ i__4].i; a[i__3].r = q__1.r, a[i__3].i = q__1.i; /* Computing MAX */ r__1 = tnrm, r__2 = c_abs(&a[i__ + j * 10 - 11]); tnrm = dmax(r__1,r__2); /* L50: */ } i__2 = i__ + i__ * 10 - 11; i__3 = i__ + i__ * 10 - 11; i__4 = imlad - 1; q__1.r = vm2[i__4] * a[i__3].r, q__1.i = vm2[i__4] * a[i__3].i; a[i__2].r = q__1.r, a[i__2].i = q__1.i; /* Computing MAX */ r__1 = tnrm, r__2 = c_abs(&a[i__ + i__ * 10 - 11]); tnrm = dmax(r__1,r__2); /* L60: */ } i__1 = n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = n; for (j = 1; j <= i__2; ++j) { i__3 = i__ + j * 10 - 11; i__4 = i__ + j * 10 - 11; i__5 = imlb - 1; q__1.r = vm1[i__5] * btmp[i__4].r, q__1.i = vm1[i__5] * btmp[ i__4].i; b[i__3].r = q__1.r, b[i__3].i = q__1.i; /* Computing MAX */ r__1 = tnrm, r__2 = c_abs(&b[i__ + j * 10 - 11]); tnrm = dmax(r__1,r__2); /* L70: */ } /* L80: */ } if (tnrm == 0.f) { tnrm = 1.f; } i__1 = m; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = n; for (j = 1; j <= i__2; ++j) { i__3 = i__ + j * 10 - 11; i__4 = i__ + j * 10 - 11; i__5 = imlc - 1; q__1.r = vm1[i__5] * ctmp[i__4].r, q__1.i = vm1[i__5] * ctmp[ i__4].i; c__[i__3].r = q__1.r, c__[i__3].i = q__1.i; i__3 = i__ + j * 10 - 11; i__4 = i__ + j * 10 - 11; csav[i__3].r = c__[i__4].r, csav[i__3] .i = c__[i__4].i; /* L90: */ } /* L100: */ } ++(*knt); ctrsyl_(trana, tranb, &isgn, &m, &n, a, & c__10, b, &c__10, c__, &c__10, &scale, &info); if (info != 0) { ++(*ninfo); } xnrm = clange_("M", &m, &n, c__, &c__10, dum); rmul.r = 1.f, rmul.i = 0.f; if (xnrm > 1.f && tnrm > 1.f) { if (xnrm > bignum / tnrm) { r__1 = dmax(xnrm,tnrm); rmul.r = r__1, rmul.i = 0.f; c_div(&q__1, &c_b43, &rmul); rmul.r = q__1.r, rmul.i = q__1.i; } } r__1 = -scale; q__1.r = r__1 * rmul.r, q__1.i = r__1 * rmul.i; cgemm_(trana, "N", &m, &n, &m, &rmul, a, & c__10, c__, &c__10, &q__1, csav, & c__10); r__1 = (real) isgn; q__1.r = r__1 * rmul.r, q__1.i = r__1 * rmul.i; cgemm_("N", tranb, &m, &n, &n, &q__1, c__, & c__10, b, &c__10, &c_b43, csav, & c__10); res1 = clange_("M", &m, &n, csav, &c__10, dum); /* Computing MAX */ r__1 = smlnum, r__2 = smlnum * xnrm, r__1 = max(r__1,r__2), r__2 = c_abs(&rmul) * tnrm * eps * xnrm; res = res1 / dmax(r__1,r__2); if (res > *rmax) { *lmax = *knt; *rmax = res; } /* L110: */ } /* L120: */ } /* L130: */ } /* L140: */ } /* L150: */ } /* L160: */ } /* L170: */ } goto L10; /* End of CGET35 */ } /* cget35_ */