#include "blaswrap.h" /* cchkhs.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static complex c_b1 = {0.f,0.f}; static complex c_b2 = {1.f,0.f}; static integer c__1 = 1; static real c_b27 = 1.f; static integer c__0 = 0; static real c_b33 = 0.f; static integer c__4 = 4; static integer c__6 = 6; /* Subroutine */ int cchkhs_(integer *nsizes, integer *nn, integer *ntypes, logical *dotype, integer *iseed, real *thresh, integer *nounit, complex *a, integer *lda, complex *h__, complex *t1, complex *t2, complex *u, integer *ldu, complex *z__, complex *uz, complex *w1, complex *w3, complex *evectl, complex *evectr, complex *evecty, complex *evectx, complex *uu, complex *tau, complex *work, integer * nwork, real *rwork, integer *iwork, logical *select, real *result, integer *info) { /* Initialized data */ static integer ktype[21] = { 1,2,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,9,9,9 }; static integer kmagn[21] = { 1,1,1,1,1,1,2,3,1,1,1,1,1,1,1,1,2,3,1,2,3 }; static integer kmode[21] = { 0,0,0,4,3,1,4,4,4,3,1,5,4,3,1,5,5,5,4,3,1 }; static integer kconds[21] = { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,0,0,0 }; /* Format strings */ static char fmt_9999[] = "(\002 CCHKHS: \002,a,\002 returned INFO=\002,i" "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED=" "(\002,3(i5,\002,\002),i5,\002)\002)"; static char fmt_9998[] = "(\002 CCHKHS: \002,a,\002 Eigenvectors from" " \002,a,\002 incorrectly \002,\002normalized.\002,/\002 Bits of " "error=\002,0p,g10.3,\002,\002,9x,\002N=\002,i6,\002, JTYPE=\002," "i6,\002, ISEED=(\002,3(i5,\002,\002),i5,\002)\002)"; static char fmt_9997[] = "(\002 CCHKHS: Selected \002,a,\002 Eigenvector" "s from \002,a,\002 do not match other eigenvectors \002,9x,\002N=" "\002,i6,\002, JTYPE=\002,i6,\002, ISEED=(\002,3(i5,\002,\002),i5," "\002)\002)"; /* System generated locals */ integer a_dim1, a_offset, evectl_dim1, evectl_offset, evectr_dim1, evectr_offset, evectx_dim1, evectx_offset, evecty_dim1, evecty_offset, h_dim1, h_offset, t1_dim1, t1_offset, t2_dim1, t2_offset, u_dim1, u_offset, uu_dim1, uu_offset, uz_dim1, uz_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5, i__6; real r__1, r__2; complex q__1; /* Builtin functions */ double sqrt(doublereal); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); double c_abs(complex *); /* Local variables */ static integer i__, j, k, n, n1, jj, in, ihi, ilo; static real ulp, cond; static integer jcol, nmax; static real unfl, ovfl, temp1, temp2; static logical badnn; extern /* Subroutine */ int cget10_(integer *, integer *, complex *, integer *, complex *, integer *, complex *, real *, real *), cget22_(char *, char *, char *, integer *, complex *, integer *, complex *, integer *, complex *, complex *, real *, real *), cgemm_(char *, char *, integer *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, complex *, integer *); static logical match; static integer imode; extern /* Subroutine */ int chst01_(integer *, integer *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, real *, real *); static real dumma[4]; static integer iinfo; static real conds, aninv, anorm; extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, complex *, integer *); static integer nmats, jsize, nerrs, itype, jtype, ntest; static real rtulp; extern /* Subroutine */ int slabad_(real *, real *), cgehrd_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), clatme_(integer *, char *, integer *, complex *, integer *, real *, complex *, char *, char *, char *, char *, real *, integer *, real *, integer *, integer *, real *, complex *, integer *, complex *, integer *); static complex cdumma[4]; extern doublereal slamch_(char *); extern /* Subroutine */ int chsein_(char *, char *, char *, logical *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *, integer *, complex *, real *, integer *, integer *, integer *), clacpy_( char *, integer *, integer *, complex *, integer *, complex *, integer *); static integer idumma[1]; extern /* Subroutine */ int claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *); static integer ioldsd[4]; extern /* Subroutine */ int xerbla_(char *, integer *), clatmr_( integer *, integer *, char *, integer *, char *, complex *, integer *, real *, complex *, char *, char *, complex *, integer * , real *, complex *, integer *, real *, char *, integer *, integer *, integer *, real *, real *, char *, complex *, integer * , integer *, integer *), clatms_(integer *, integer *, char *, integer *, char *, real *, integer *, real *, real *, integer *, integer *, char *, complex *, integer *, complex *, integer *), chseqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *), ctrevc_(char *, char *, logical *, integer *, complex *, integer *, complex *, integer *, complex *, integer *, integer *, integer *, complex *, real *, integer *), cunghr_(integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), cunmhr_(char *, char *, integer *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *), slafts_(char *, integer *, integer *, integer *, integer *, real *, integer *, real *, integer *, integer *), slasum_(char *, integer *, integer *, integer *); static real rtunfl, rtovfl, rtulpi, ulpinv; static integer mtypes, ntestt; /* Fortran I/O blocks */ static cilist io___35 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___38 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___40 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___41 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___42 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___47 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___49 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___50 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___54 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___55 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___56 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___57 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___58 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___59 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___60 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___61 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___62 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___63 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___64 = { 0, 0, 0, fmt_9999, 0 }; /* -- LAPACK test routine (version 3.1.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. February 2007 Purpose ======= CCHKHS checks the nonsymmetric eigenvalue problem routines. CGEHRD factors A as U H U' , where ' means conjugate transpose, H is hessenberg, and U is unitary. CUNGHR generates the unitary matrix U. CUNMHR multiplies a matrix by the unitary matrix U. CHSEQR factors H as Z T Z' , where Z is unitary and T is upper triangular. It also computes the eigenvalues, w(1), ..., w(n); we define a diagonal matrix W whose (diagonal) entries are the eigenvalues. CTREVC computes the left eigenvector matrix L and the right eigenvector matrix R for the matrix T. The columns of L are the complex conjugates of the left eigenvectors of T. The columns of R are the right eigenvectors of T. L is lower triangular, and R is upper triangular. CHSEIN computes the left eigenvector matrix Y and the right eigenvector matrix X for the matrix H. The columns of Y are the complex conjugates of the left eigenvectors of H. The columns of X are the right eigenvectors of H. Y is lower triangular, and X is upper triangular. When CCHKHS is called, a number of matrix "sizes" ("n's") and a number of matrix "types" are specified. For each size ("n") and each type of matrix, one matrix will be generated and used to test the nonsymmetric eigenroutines. For each matrix, 14 tests will be performed: (1) | A - U H U**H | / ( |A| n ulp ) (2) | I - UU**H | / ( n ulp ) (3) | H - Z T Z**H | / ( |H| n ulp ) (4) | I - ZZ**H | / ( n ulp ) (5) | A - UZ H (UZ)**H | / ( |A| n ulp ) (6) | I - UZ (UZ)**H | / ( n ulp ) (7) | T(Z computed) - T(Z not computed) | / ( |T| ulp ) (8) | W(Z computed) - W(Z not computed) | / ( |W| ulp ) (9) | TR - RW | / ( |T| |R| ulp ) (10) | L**H T - W**H L | / ( |T| |L| ulp ) (11) | HX - XW | / ( |H| |X| ulp ) (12) | Y**H H - W**H Y | / ( |H| |Y| ulp ) (13) | AX - XW | / ( |A| |X| ulp ) (14) | Y**H A - W**H Y | / ( |A| |Y| ulp ) The "sizes" are specified by an array NN(1:NSIZES); the value of each element NN(j) specifies one size. The "types" are specified by a logical array DOTYPE( 1:NTYPES ); if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. Currently, the list of possible types is: (1) The zero matrix. (2) The identity matrix. (3) A (transposed) Jordan block, with 1's on the diagonal. (4) A diagonal matrix with evenly spaced entries 1, ..., ULP and random complex angles. (ULP = (first number larger than 1) - 1 ) (5) A diagonal matrix with geometrically spaced entries 1, ..., ULP and random complex angles. (6) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP and random complex angles. (7) Same as (4), but multiplied by SQRT( overflow threshold ) (8) Same as (4), but multiplied by SQRT( underflow threshold ) (9) A matrix of the form U' T U, where U is unitary and T has evenly spaced entries 1, ..., ULP with random complex angles on the diagonal and random O(1) entries in the upper triangle. (10) A matrix of the form U' T U, where U is unitary and T has geometrically spaced entries 1, ..., ULP with random complex angles on the diagonal and random O(1) entries in the upper triangle. (11) A matrix of the form U' T U, where U is unitary and T has "clustered" entries 1, ULP,..., ULP with random complex angles on the diagonal and random O(1) entries in the upper triangle. (12) A matrix of the form U' T U, where U is unitary and T has complex eigenvalues randomly chosen from ULP < |z| < 1 and random O(1) entries in the upper triangle. (13) A matrix of the form X' T X, where X has condition SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP with random complex angles on the diagonal and random O(1) entries in the upper triangle. (14) A matrix of the form X' T X, where X has condition SQRT( ULP ) and T has geometrically spaced entries 1, ..., ULP with random complex angles on the diagonal and random O(1) entries in the upper triangle. (15) A matrix of the form X' T X, where X has condition SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP with random complex angles on the diagonal and random O(1) entries in the upper triangle. (16) A matrix of the form X' T X, where X has condition SQRT( ULP ) and T has complex eigenvalues randomly chosen from ULP < |z| < 1 and random O(1) entries in the upper triangle. (17) Same as (16), but multiplied by SQRT( overflow threshold ) (18) Same as (16), but multiplied by SQRT( underflow threshold ) (19) Nonsymmetric matrix with random entries chosen from |z| < 1 (20) Same as (19), but multiplied by SQRT( overflow threshold ) (21) Same as (19), but multiplied by SQRT( underflow threshold ) Arguments ========== NSIZES - INTEGER The number of sizes of matrices to use. If it is zero, CCHKHS does nothing. It must be at least zero. Not modified. NN - INTEGER array, dimension (NSIZES) An array containing the sizes to be used for the matrices. Zero values will be skipped. The values must be at least zero. Not modified. NTYPES - INTEGER The number of elements in DOTYPE. If it is zero, CCHKHS does nothing. It must be at least zero. If it is MAXTYP+1 and NSIZES is 1, then an additional type, MAXTYP+1 is defined, which is to use whatever matrix is in A. This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. . Not modified. DOTYPE - LOGICAL array, dimension (NTYPES) If DOTYPE(j) is .TRUE., then for each size in NN a matrix of that size and of type j will be generated. If NTYPES is smaller than the maximum number of types defined (PARAMETER MAXTYP), then types NTYPES+1 through MAXTYP will not be generated. If NTYPES is larger than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) will be ignored. Not modified. ISEED - INTEGER array, dimension (4) On entry ISEED specifies the seed of the random number generator. The array elements should be between 0 and 4095; if not they will be reduced mod 4096. Also, ISEED(4) must be odd. The random number generator uses a linear congruential sequence limited to small integers, and so should produce machine independent random numbers. The values of ISEED are changed on exit, and can be used in the next call to CCHKHS to continue the same random number sequence. Modified. THRESH - REAL A test will count as "failed" if the "error", computed as described above, exceeds THRESH. Note that the error is scaled to be O(1), so THRESH should be a reasonably small multiple of 1, e.g., 10 or 100. In particular, it should not depend on the precision (single vs. double) or the size of the matrix. It must be at least zero. Not modified. NOUNIT - INTEGER The FORTRAN unit number for printing out error messages (e.g., if a routine returns IINFO not equal to 0.) Not modified. A - COMPLEX array, dimension (LDA,max(NN)) Used to hold the matrix whose eigenvalues are to be computed. On exit, A contains the last matrix actually used. Modified. LDA - INTEGER The leading dimension of A, H, T1 and T2. It must be at least 1 and at least max( NN ). Not modified. H - COMPLEX array, dimension (LDA,max(NN)) The upper hessenberg matrix computed by CGEHRD. On exit, H contains the Hessenberg form of the matrix in A. Modified. T1 - COMPLEX array, dimension (LDA,max(NN)) The Schur (="quasi-triangular") matrix computed by CHSEQR if Z is computed. On exit, T1 contains the Schur form of the matrix in A. Modified. T2 - COMPLEX array, dimension (LDA,max(NN)) The Schur matrix computed by CHSEQR when Z is not computed. This should be identical to T1. Modified. LDU - INTEGER The leading dimension of U, Z, UZ and UU. It must be at least 1 and at least max( NN ). Not modified. U - COMPLEX array, dimension (LDU,max(NN)) The unitary matrix computed by CGEHRD. Modified. Z - COMPLEX array, dimension (LDU,max(NN)) The unitary matrix computed by CHSEQR. Modified. UZ - COMPLEX array, dimension (LDU,max(NN)) The product of U times Z. Modified. W1 - COMPLEX array, dimension (max(NN)) The eigenvalues of A, as computed by a full Schur decomposition H = Z T Z'. On exit, W1 contains the eigenvalues of the matrix in A. Modified. W3 - COMPLEX array, dimension (max(NN)) The eigenvalues of A, as computed by a partial Schur decomposition (Z not computed, T only computed as much as is necessary for determining eigenvalues). On exit, W3 contains the eigenvalues of the matrix in A, possibly perturbed by CHSEIN. Modified. EVECTL - COMPLEX array, dimension (LDU,max(NN)) The conjugate transpose of the (upper triangular) left eigenvector matrix for the matrix in T1. Modified. EVECTR - COMPLEX array, dimension (LDU,max(NN)) The (upper triangular) right eigenvector matrix for the matrix in T1. Modified. EVECTY - COMPLEX array, dimension (LDU,max(NN)) The conjugate transpose of the left eigenvector matrix for the matrix in H. Modified. EVECTX - COMPLEX array, dimension (LDU,max(NN)) The right eigenvector matrix for the matrix in H. Modified. UU - COMPLEX array, dimension (LDU,max(NN)) Details of the unitary matrix computed by CGEHRD. Modified. TAU - COMPLEX array, dimension (max(NN)) Further details of the unitary matrix computed by CGEHRD. Modified. WORK - COMPLEX array, dimension (NWORK) Workspace. Modified. NWORK - INTEGER The number of entries in WORK. NWORK >= 4*NN(j)*NN(j) + 2. RWORK - REAL array, dimension (max(NN)) Workspace. Could be equivalenced to IWORK, but not SELECT. Modified. IWORK - INTEGER array, dimension (max(NN)) Workspace. Modified. SELECT - LOGICAL array, dimension (max(NN)) Workspace. Could be equivalenced to IWORK, but not RWORK. Modified. RESULT - REAL array, dimension (14) The values computed by the fourteen tests described above. The values are currently limited to 1/ulp, to avoid overflow. Modified. INFO - INTEGER If 0, then everything ran OK. -1: NSIZES < 0 -2: Some NN(j) < 0 -3: NTYPES < 0 -6: THRESH < 0 -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). -14: LDU < 1 or LDU < NMAX. -26: NWORK too small. If CLATMR, CLATMS, or CLATME returns an error code, the absolute value of it is returned. If 1, then CHSEQR could not find all the shifts. If 2, then the EISPACK code (for small blocks) failed. If >2, then 30*N iterations were not enough to find an eigenvalue or to decompose the problem. Modified. ----------------------------------------------------------------------- Some Local Variables and Parameters: ---- ----- --------- --- ---------- ZERO, ONE Real 0 and 1. MAXTYP The number of types defined. MTEST The number of tests defined: care must be taken that (1) the size of RESULT, (2) the number of tests actually performed, and (3) MTEST agree. NTEST The number of tests performed on this matrix so far. This should be less than MTEST, and equal to it by the last test. It will be less if any of the routines being tested indicates that it could not compute the matrices that would be tested. NMAX Largest value in NN. NMATS The number of matrices generated so far. NERRS The number of tests which have exceeded THRESH so far (computed by SLAFTS). COND, CONDS, IMODE Values to be passed to the matrix generators. ANORM Norm of A; passed to matrix generators. OVFL, UNFL Overflow and underflow thresholds. ULP, ULPINV Finest relative precision and its inverse. RTOVFL, RTUNFL, RTULP, RTULPI Square roots of the previous 4 values. The following four arrays decode JTYPE: KTYPE(j) The general type (1-10) for type "j". KMODE(j) The MODE value to be passed to the matrix generator for type "j". KMAGN(j) The order of magnitude ( O(1), O(overflow^(1/2) ), O(underflow^(1/2) ) KCONDS(j) Selects whether CONDS is to be 1 or 1/sqrt(ulp). (0 means irrelevant.) ===================================================================== Parameter adjustments */ --nn; --dotype; --iseed; t2_dim1 = *lda; t2_offset = 1 + t2_dim1; t2 -= t2_offset; t1_dim1 = *lda; t1_offset = 1 + t1_dim1; t1 -= t1_offset; h_dim1 = *lda; h_offset = 1 + h_dim1; h__ -= h_offset; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; uu_dim1 = *ldu; uu_offset = 1 + uu_dim1; uu -= uu_offset; evectx_dim1 = *ldu; evectx_offset = 1 + evectx_dim1; evectx -= evectx_offset; evecty_dim1 = *ldu; evecty_offset = 1 + evecty_dim1; evecty -= evecty_offset; evectr_dim1 = *ldu; evectr_offset = 1 + evectr_dim1; evectr -= evectr_offset; evectl_dim1 = *ldu; evectl_offset = 1 + evectl_dim1; evectl -= evectl_offset; uz_dim1 = *ldu; uz_offset = 1 + uz_dim1; uz -= uz_offset; z_dim1 = *ldu; z_offset = 1 + z_dim1; z__ -= z_offset; u_dim1 = *ldu; u_offset = 1 + u_dim1; u -= u_offset; --w1; --w3; --tau; --work; --rwork; --iwork; --select; --result; /* Function Body Check for errors */ ntestt = 0; *info = 0; badnn = FALSE_; nmax = 0; i__1 = *nsizes; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ i__2 = nmax, i__3 = nn[j]; nmax = max(i__2,i__3); if (nn[j] < 0) { badnn = TRUE_; } /* L10: */ } /* Check for errors */ if (*nsizes < 0) { *info = -1; } else if (badnn) { *info = -2; } else if (*ntypes < 0) { *info = -3; } else if (*thresh < 0.f) { *info = -6; } else if (*lda <= 1 || *lda < nmax) { *info = -9; } else if (*ldu <= 1 || *ldu < nmax) { *info = -14; } else if ((nmax << 2) * nmax + 2 > *nwork) { *info = -26; } if (*info != 0) { i__1 = -(*info); xerbla_("CCHKHS", &i__1); return 0; } /* Quick return if possible */ if (*nsizes == 0 || *ntypes == 0) { return 0; } /* More important constants */ unfl = slamch_("Safe minimum"); ovfl = slamch_("Overflow"); slabad_(&unfl, &ovfl); ulp = slamch_("Epsilon") * slamch_("Base"); ulpinv = 1.f / ulp; rtunfl = sqrt(unfl); rtovfl = sqrt(ovfl); rtulp = sqrt(ulp); rtulpi = 1.f / rtulp; /* Loop over sizes, types */ nerrs = 0; nmats = 0; i__1 = *nsizes; for (jsize = 1; jsize <= i__1; ++jsize) { n = nn[jsize]; n1 = max(1,n); aninv = 1.f / (real) n1; if (*nsizes != 1) { mtypes = min(21,*ntypes); } else { mtypes = min(22,*ntypes); } i__2 = mtypes; for (jtype = 1; jtype <= i__2; ++jtype) { if (! dotype[jtype]) { goto L250; } ++nmats; ntest = 0; /* Save ISEED in case of an error. */ for (j = 1; j <= 4; ++j) { ioldsd[j - 1] = iseed[j]; /* L20: */ } /* Initialize RESULT */ for (j = 1; j <= 14; ++j) { result[j] = 0.f; /* L30: */ } /* Compute "A" Control parameters: KMAGN KCONDS KMODE KTYPE =1 O(1) 1 clustered 1 zero =2 large large clustered 2 identity =3 small exponential Jordan =4 arithmetic diagonal, (w/ eigenvalues) =5 random log hermitian, w/ eigenvalues =6 random general, w/ eigenvalues =7 random diagonal =8 random hermitian =9 random general =10 random triangular */ if (mtypes > 21) { goto L100; } itype = ktype[jtype - 1]; imode = kmode[jtype - 1]; /* Compute norm */ switch (kmagn[jtype - 1]) { case 1: goto L40; case 2: goto L50; case 3: goto L60; } L40: anorm = 1.f; goto L70; L50: anorm = rtovfl * ulp * aninv; goto L70; L60: anorm = rtunfl * n * ulpinv; goto L70; L70: claset_("Full", lda, &n, &c_b1, &c_b1, &a[a_offset], lda); iinfo = 0; cond = ulpinv; /* Special Matrices */ if (itype == 1) { /* Zero */ iinfo = 0; } else if (itype == 2) { /* Identity */ i__3 = n; for (jcol = 1; jcol <= i__3; ++jcol) { i__4 = jcol + jcol * a_dim1; a[i__4].r = anorm, a[i__4].i = 0.f; /* L80: */ } } else if (itype == 3) { /* Jordan Block */ i__3 = n; for (jcol = 1; jcol <= i__3; ++jcol) { i__4 = jcol + jcol * a_dim1; a[i__4].r = anorm, a[i__4].i = 0.f; if (jcol > 1) { i__4 = jcol + (jcol - 1) * a_dim1; a[i__4].r = 1.f, a[i__4].i = 0.f; } /* L90: */ } } else if (itype == 4) { /* Diagonal Matrix, [Eigen]values Specified */ clatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &imode, &cond, &c_b2, "T", "N", &work[n + 1], &c__1, &c_b27, &work[( n << 1) + 1], &c__1, &c_b27, "N", idumma, &c__0, & c__0, &c_b33, &anorm, "NO", &a[a_offset], lda, &iwork[ 1], &iinfo); } else if (itype == 5) { /* Hermitian, eigenvalues specified */ clatms_(&n, &n, "D", &iseed[1], "H", &rwork[1], &imode, &cond, &anorm, &n, &n, "N", &a[a_offset], lda, &work[1], & iinfo); } else if (itype == 6) { /* General, eigenvalues specified */ if (kconds[jtype - 1] == 1) { conds = 1.f; } else if (kconds[jtype - 1] == 2) { conds = rtulpi; } else { conds = 0.f; } clatme_(&n, "D", &iseed[1], &work[1], &imode, &cond, &c_b2, " ", "T", "T", "T", &rwork[1], &c__4, &conds, &n, &n, &anorm, &a[a_offset], lda, &work[n + 1], &iinfo); } else if (itype == 7) { /* Diagonal, random eigenvalues */ clatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b27, &c_b2, "T", "N", &work[n + 1], &c__1, &c_b27, &work[( n << 1) + 1], &c__1, &c_b27, "N", idumma, &c__0, & c__0, &c_b33, &anorm, "NO", &a[a_offset], lda, &iwork[ 1], &iinfo); } else if (itype == 8) { /* Hermitian, random eigenvalues */ clatmr_(&n, &n, "D", &iseed[1], "H", &work[1], &c__6, &c_b27, &c_b2, "T", "N", &work[n + 1], &c__1, &c_b27, &work[( n << 1) + 1], &c__1, &c_b27, "N", idumma, &n, &n, & c_b33, &anorm, "NO", &a[a_offset], lda, &iwork[1], & iinfo); } else if (itype == 9) { /* General, random eigenvalues */ clatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b27, &c_b2, "T", "N", &work[n + 1], &c__1, &c_b27, &work[( n << 1) + 1], &c__1, &c_b27, "N", idumma, &n, &n, & c_b33, &anorm, "NO", &a[a_offset], lda, &iwork[1], & iinfo); } else if (itype == 10) { /* Triangular, random eigenvalues */ clatmr_(&n, &n, "D", &iseed[1], "N", &work[1], &c__6, &c_b27, &c_b2, "T", "N", &work[n + 1], &c__1, &c_b27, &work[( n << 1) + 1], &c__1, &c_b27, "N", idumma, &n, &c__0, & c_b33, &anorm, "NO", &a[a_offset], lda, &iwork[1], & iinfo); } else { iinfo = 1; } if (iinfo != 0) { io___35.ciunit = *nounit; s_wsfe(&io___35); do_fio(&c__1, "Generator", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); return 0; } L100: /* Call CGEHRD to compute H and U, do tests. */ clacpy_(" ", &n, &n, &a[a_offset], lda, &h__[h_offset], lda); ntest = 1; ilo = 1; ihi = n; i__3 = *nwork - n; cgehrd_(&n, &ilo, &ihi, &h__[h_offset], lda, &work[1], &work[n + 1], &i__3, &iinfo); if (iinfo != 0) { result[1] = ulpinv; io___38.ciunit = *nounit; s_wsfe(&io___38); do_fio(&c__1, "CGEHRD", (ftnlen)6); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); goto L240; } i__3 = n - 1; for (j = 1; j <= i__3; ++j) { i__4 = j + 1 + j * uu_dim1; uu[i__4].r = 0.f, uu[i__4].i = 0.f; i__4 = n; for (i__ = j + 2; i__ <= i__4; ++i__) { i__5 = i__ + j * u_dim1; i__6 = i__ + j * h_dim1; u[i__5].r = h__[i__6].r, u[i__5].i = h__[i__6].i; i__5 = i__ + j * uu_dim1; i__6 = i__ + j * h_dim1; uu[i__5].r = h__[i__6].r, uu[i__5].i = h__[i__6].i; i__5 = i__ + j * h_dim1; h__[i__5].r = 0.f, h__[i__5].i = 0.f; /* L110: */ } /* L120: */ } i__3 = n - 1; ccopy_(&i__3, &work[1], &c__1, &tau[1], &c__1); i__3 = *nwork - n; cunghr_(&n, &ilo, &ihi, &u[u_offset], ldu, &work[1], &work[n + 1], &i__3, &iinfo); ntest = 2; chst01_(&n, &ilo, &ihi, &a[a_offset], lda, &h__[h_offset], lda, & u[u_offset], ldu, &work[1], nwork, &rwork[1], &result[1]); /* Call CHSEQR to compute T1, T2 and Z, do tests. Eigenvalues only (W3) */ clacpy_(" ", &n, &n, &h__[h_offset], lda, &t2[t2_offset], lda); ntest = 3; result[3] = ulpinv; chseqr_("E", "N", &n, &ilo, &ihi, &t2[t2_offset], lda, &w3[1], & uz[uz_offset], ldu, &work[1], nwork, &iinfo); if (iinfo != 0) { io___40.ciunit = *nounit; s_wsfe(&io___40); do_fio(&c__1, "CHSEQR(E)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); if (iinfo <= n + 2) { *info = abs(iinfo); goto L240; } } /* Eigenvalues (W1) and Full Schur Form (T2) */ clacpy_(" ", &n, &n, &h__[h_offset], lda, &t2[t2_offset], lda); chseqr_("S", "N", &n, &ilo, &ihi, &t2[t2_offset], lda, &w1[1], & uz[uz_offset], ldu, &work[1], nwork, &iinfo); if (iinfo != 0 && iinfo <= n + 2) { io___41.ciunit = *nounit; s_wsfe(&io___41); do_fio(&c__1, "CHSEQR(S)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); goto L240; } /* Eigenvalues (W1), Schur Form (T1), and Schur Vectors (UZ) */ clacpy_(" ", &n, &n, &h__[h_offset], lda, &t1[t1_offset], lda); clacpy_(" ", &n, &n, &u[u_offset], ldu, &uz[uz_offset], ldu); chseqr_("S", "V", &n, &ilo, &ihi, &t1[t1_offset], lda, &w1[1], & uz[uz_offset], ldu, &work[1], nwork, &iinfo); if (iinfo != 0 && iinfo <= n + 2) { io___42.ciunit = *nounit; s_wsfe(&io___42); do_fio(&c__1, "CHSEQR(V)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); goto L240; } /* Compute Z = U' UZ */ cgemm_("C", "N", &n, &n, &n, &c_b2, &u[u_offset], ldu, &uz[ uz_offset], ldu, &c_b1, &z__[z_offset], ldu); ntest = 8; /* Do Tests 3: | H - Z T Z' | / ( |H| n ulp ) and 4: | I - Z Z' | / ( n ulp ) */ chst01_(&n, &ilo, &ihi, &h__[h_offset], lda, &t1[t1_offset], lda, &z__[z_offset], ldu, &work[1], nwork, &rwork[1], &result[ 3]); /* Do Tests 5: | A - UZ T (UZ)' | / ( |A| n ulp ) and 6: | I - UZ (UZ)' | / ( n ulp ) */ chst01_(&n, &ilo, &ihi, &a[a_offset], lda, &t1[t1_offset], lda, & uz[uz_offset], ldu, &work[1], nwork, &rwork[1], &result[5] ); /* Do Test 7: | T2 - T1 | / ( |T| n ulp ) */ cget10_(&n, &n, &t2[t2_offset], lda, &t1[t1_offset], lda, &work[1] , &rwork[1], &result[7]); /* Do Test 8: | W3 - W1 | / ( max(|W1|,|W3|) ulp ) */ temp1 = 0.f; temp2 = 0.f; i__3 = n; for (j = 1; j <= i__3; ++j) { /* Computing MAX */ r__1 = temp1, r__2 = c_abs(&w1[j]), r__1 = max(r__1,r__2), r__2 = c_abs(&w3[j]); temp1 = dmax(r__1,r__2); /* Computing MAX */ i__4 = j; i__5 = j; q__1.r = w1[i__4].r - w3[i__5].r, q__1.i = w1[i__4].i - w3[ i__5].i; r__1 = temp2, r__2 = c_abs(&q__1); temp2 = dmax(r__1,r__2); /* L130: */ } /* Computing MAX */ r__1 = unfl, r__2 = ulp * dmax(temp1,temp2); result[8] = temp2 / dmax(r__1,r__2); /* Compute the Left and Right Eigenvectors of T Compute the Right eigenvector Matrix: */ ntest = 9; result[9] = ulpinv; /* Select every other eigenvector */ i__3 = n; for (j = 1; j <= i__3; ++j) { select[j] = FALSE_; /* L140: */ } i__3 = n; for (j = 1; j <= i__3; j += 2) { select[j] = TRUE_; /* L150: */ } ctrevc_("Right", "All", &select[1], &n, &t1[t1_offset], lda, cdumma, ldu, &evectr[evectr_offset], ldu, &n, &in, &work[ 1], &rwork[1], &iinfo); if (iinfo != 0) { io___47.ciunit = *nounit; s_wsfe(&io___47); do_fio(&c__1, "CTREVC(R,A)", (ftnlen)11); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); goto L240; } /* Test 9: | TR - RW | / ( |T| |R| ulp ) */ cget22_("N", "N", "N", &n, &t1[t1_offset], lda, &evectr[ evectr_offset], ldu, &w1[1], &work[1], &rwork[1], dumma); result[9] = dumma[0]; if (dumma[1] > *thresh) { io___49.ciunit = *nounit; s_wsfe(&io___49); do_fio(&c__1, "Right", (ftnlen)5); do_fio(&c__1, "CTREVC", (ftnlen)6); do_fio(&c__1, (char *)&dumma[1], (ftnlen)sizeof(real)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); } /* Compute selected right eigenvectors and confirm that they agree with previous right eigenvectors */ ctrevc_("Right", "Some", &select[1], &n, &t1[t1_offset], lda, cdumma, ldu, &evectl[evectl_offset], ldu, &n, &in, &work[ 1], &rwork[1], &iinfo); if (iinfo != 0) { io___50.ciunit = *nounit; s_wsfe(&io___50); do_fio(&c__1, "CTREVC(R,S)", (ftnlen)11); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); goto L240; } k = 1; match = TRUE_; i__3 = n; for (j = 1; j <= i__3; ++j) { if (select[j]) { i__4 = n; for (jj = 1; jj <= i__4; ++jj) { i__5 = jj + j * evectr_dim1; i__6 = jj + k * evectl_dim1; if (evectr[i__5].r != evectl[i__6].r || evectr[i__5] .i != evectl[i__6].i) { match = FALSE_; goto L180; } /* L160: */ } ++k; } /* L170: */ } L180: if (! match) { io___54.ciunit = *nounit; s_wsfe(&io___54); do_fio(&c__1, "Right", (ftnlen)5); do_fio(&c__1, "CTREVC", (ftnlen)6); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); } /* Compute the Left eigenvector Matrix: */ ntest = 10; result[10] = ulpinv; ctrevc_("Left", "All", &select[1], &n, &t1[t1_offset], lda, & evectl[evectl_offset], ldu, cdumma, ldu, &n, &in, &work[1] , &rwork[1], &iinfo); if (iinfo != 0) { io___55.ciunit = *nounit; s_wsfe(&io___55); do_fio(&c__1, "CTREVC(L,A)", (ftnlen)11); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); goto L240; } /* Test 10: | LT - WL | / ( |T| |L| ulp ) */ cget22_("C", "N", "C", &n, &t1[t1_offset], lda, &evectl[ evectl_offset], ldu, &w1[1], &work[1], &rwork[1], &dumma[ 2]); result[10] = dumma[2]; if (dumma[3] > *thresh) { io___56.ciunit = *nounit; s_wsfe(&io___56); do_fio(&c__1, "Left", (ftnlen)4); do_fio(&c__1, "CTREVC", (ftnlen)6); do_fio(&c__1, (char *)&dumma[3], (ftnlen)sizeof(real)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); } /* Compute selected left eigenvectors and confirm that they agree with previous left eigenvectors */ ctrevc_("Left", "Some", &select[1], &n, &t1[t1_offset], lda, & evectr[evectr_offset], ldu, cdumma, ldu, &n, &in, &work[1] , &rwork[1], &iinfo); if (iinfo != 0) { io___57.ciunit = *nounit; s_wsfe(&io___57); do_fio(&c__1, "CTREVC(L,S)", (ftnlen)11); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); goto L240; } k = 1; match = TRUE_; i__3 = n; for (j = 1; j <= i__3; ++j) { if (select[j]) { i__4 = n; for (jj = 1; jj <= i__4; ++jj) { i__5 = jj + j * evectl_dim1; i__6 = jj + k * evectr_dim1; if (evectl[i__5].r != evectr[i__6].r || evectl[i__5] .i != evectr[i__6].i) { match = FALSE_; goto L210; } /* L190: */ } ++k; } /* L200: */ } L210: if (! match) { io___58.ciunit = *nounit; s_wsfe(&io___58); do_fio(&c__1, "Left", (ftnlen)4); do_fio(&c__1, "CTREVC", (ftnlen)6); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); } /* Call CHSEIN for Right eigenvectors of H, do test 11 */ ntest = 11; result[11] = ulpinv; i__3 = n; for (j = 1; j <= i__3; ++j) { select[j] = TRUE_; /* L220: */ } chsein_("Right", "Qr", "Ninitv", &select[1], &n, &h__[h_offset], lda, &w3[1], cdumma, ldu, &evectx[evectx_offset], ldu, & n1, &in, &work[1], &rwork[1], &iwork[1], &iwork[1], & iinfo); if (iinfo != 0) { io___59.ciunit = *nounit; s_wsfe(&io___59); do_fio(&c__1, "CHSEIN(R)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { goto L240; } } else { /* Test 11: | HX - XW | / ( |H| |X| ulp ) (from inverse iteration) */ cget22_("N", "N", "N", &n, &h__[h_offset], lda, &evectx[ evectx_offset], ldu, &w3[1], &work[1], &rwork[1], dumma); if (dumma[0] < ulpinv) { result[11] = dumma[0] * aninv; } if (dumma[1] > *thresh) { io___60.ciunit = *nounit; s_wsfe(&io___60); do_fio(&c__1, "Right", (ftnlen)5); do_fio(&c__1, "CHSEIN", (ftnlen)6); do_fio(&c__1, (char *)&dumma[1], (ftnlen)sizeof(real)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; e_wsfe(); } } /* Call CHSEIN for Left eigenvectors of H, do test 12 */ ntest = 12; result[12] = ulpinv; i__3 = n; for (j = 1; j <= i__3; ++j) { select[j] = TRUE_; /* L230: */ } chsein_("Left", "Qr", "Ninitv", &select[1], &n, &h__[h_offset], lda, &w3[1], &evecty[evecty_offset], ldu, cdumma, ldu, & n1, &in, &work[1], &rwork[1], &iwork[1], &iwork[1], & iinfo); if (iinfo != 0) { io___61.ciunit = *nounit; s_wsfe(&io___61); do_fio(&c__1, "CHSEIN(L)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { goto L240; } } else { /* Test 12: | YH - WY | / ( |H| |Y| ulp ) (from inverse iteration) */ cget22_("C", "N", "C", &n, &h__[h_offset], lda, &evecty[ evecty_offset], ldu, &w3[1], &work[1], &rwork[1], & dumma[2]); if (dumma[2] < ulpinv) { result[12] = dumma[2] * aninv; } if (dumma[3] > *thresh) { io___62.ciunit = *nounit; s_wsfe(&io___62); do_fio(&c__1, "Left", (ftnlen)4); do_fio(&c__1, "CHSEIN", (ftnlen)6); do_fio(&c__1, (char *)&dumma[3], (ftnlen)sizeof(real)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; e_wsfe(); } } /* Call CUNMHR for Right eigenvectors of A, do test 13 */ ntest = 13; result[13] = ulpinv; cunmhr_("Left", "No transpose", &n, &n, &ilo, &ihi, &uu[uu_offset] , ldu, &tau[1], &evectx[evectx_offset], ldu, &work[1], nwork, &iinfo); if (iinfo != 0) { io___63.ciunit = *nounit; s_wsfe(&io___63); do_fio(&c__1, "CUNMHR(L)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { goto L240; } } else { /* Test 13: | AX - XW | / ( |A| |X| ulp ) (from inverse iteration) */ cget22_("N", "N", "N", &n, &a[a_offset], lda, &evectx[ evectx_offset], ldu, &w3[1], &work[1], &rwork[1], dumma); if (dumma[0] < ulpinv) { result[13] = dumma[0] * aninv; } } /* Call CUNMHR for Left eigenvectors of A, do test 14 */ ntest = 14; result[14] = ulpinv; cunmhr_("Left", "No transpose", &n, &n, &ilo, &ihi, &uu[uu_offset] , ldu, &tau[1], &evecty[evecty_offset], ldu, &work[1], nwork, &iinfo); if (iinfo != 0) { io___64.ciunit = *nounit; s_wsfe(&io___64); do_fio(&c__1, "CUNMHR(L)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { goto L240; } } else { /* Test 14: | YA - WY | / ( |A| |Y| ulp ) (from inverse iteration) */ cget22_("C", "N", "C", &n, &a[a_offset], lda, &evecty[ evecty_offset], ldu, &w3[1], &work[1], &rwork[1], & dumma[2]); if (dumma[2] < ulpinv) { result[14] = dumma[2] * aninv; } } /* End of Loop -- Check for RESULT(j) > THRESH */ L240: ntestt += ntest; slafts_("CHS", &n, &n, &jtype, &ntest, &result[1], ioldsd, thresh, nounit, &nerrs); L250: ; } /* L260: */ } /* Summary */ slasum_("CHS", nounit, &nerrs, &ntestt); return 0; /* End of CCHKHS */ } /* cchkhs_ */