#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int zlarf_(char *side, integer *m, integer *n, doublecomplex *v, integer *incv, doublecomplex *tau, doublecomplex *c__, integer * ldc, doublecomplex *work) { /* -- LAPACK auxiliary routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= ZLARF applies a complex elementary reflector H to a complex M-by-N matrix C, from either the left or the right. H is represented in the form H = I - tau * v * v' where tau is a complex scalar and v is a complex vector. If tau = 0, then H is taken to be the unit matrix. To apply H' (the conjugate transpose of H), supply conjg(tau) instead tau. Arguments ========= SIDE (input) CHARACTER*1 = 'L': form H * C = 'R': form C * H M (input) INTEGER The number of rows of the matrix C. N (input) INTEGER The number of columns of the matrix C. V (input) COMPLEX*16 array, dimension (1 + (M-1)*abs(INCV)) if SIDE = 'L' or (1 + (N-1)*abs(INCV)) if SIDE = 'R' The vector v in the representation of H. V is not used if TAU = 0. INCV (input) INTEGER The increment between elements of v. INCV <> 0. TAU (input) COMPLEX*16 The value tau in the representation of H. C (input/output) COMPLEX*16 array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by the matrix H * C if SIDE = 'L', or C * H if SIDE = 'R'. LDC (input) INTEGER The leading dimension of the array C. LDC >= max(1,M). WORK (workspace) COMPLEX*16 array, dimension (N) if SIDE = 'L' or (M) if SIDE = 'R' ===================================================================== Parameter adjustments */ /* Table of constant values */ static doublecomplex c_b1 = {1.,0.}; static doublecomplex c_b2 = {0.,0.}; static integer c__1 = 1; /* System generated locals */ integer c_dim1, c_offset; doublecomplex z__1; /* Local variables */ extern logical lsame_(char *, char *); extern /* Subroutine */ int zgerc_(integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), zgemv_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *); --v; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; --work; /* Function Body */ if (lsame_(side, "L")) { /* Form H * C */ if (tau->r != 0. || tau->i != 0.) { /* w := C' * v */ zgemv_("Conjugate transpose", m, n, &c_b1, &c__[c_offset], ldc, & v[1], incv, &c_b2, &work[1], &c__1); /* C := C - v * w' */ z__1.r = -tau->r, z__1.i = -tau->i; zgerc_(m, n, &z__1, &v[1], incv, &work[1], &c__1, &c__[c_offset], ldc); } } else { /* Form C * H */ if (tau->r != 0. || tau->i != 0.) { /* w := C * v */ zgemv_("No transpose", m, n, &c_b1, &c__[c_offset], ldc, &v[1], incv, &c_b2, &work[1], &c__1); /* C := C - w * v' */ z__1.r = -tau->r, z__1.i = -tau->i; zgerc_(m, n, &z__1, &work[1], &c__1, &v[1], incv, &c__[c_offset], ldc); } } return 0; /* End of ZLARF */ } /* zlarf_ */