#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int zlaqp2_(integer *m, integer *n, integer *offset, doublecomplex *a, integer *lda, integer *jpvt, doublecomplex *tau, doublereal *vn1, doublereal *vn2, doublecomplex *work) { /* -- LAPACK auxiliary routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= ZLAQP2 computes a QR factorization with column pivoting of the block A(OFFSET+1:M,1:N). The block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized. Arguments ========= M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= 0. OFFSET (input) INTEGER The number of rows of the matrix A that must be pivoted but no factorized. OFFSET >= 0. A (input/output) COMPLEX*16 array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, the upper triangle of block A(OFFSET+1:M,1:N) is the triangular factor obtained; the elements in block A(OFFSET+1:M,1:N) below the diagonal, together with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors. Block A(1:OFFSET,1:N) has been accordingly pivoted, but no factorized. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). JPVT (input/output) INTEGER array, dimension (N) On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted to the front of A*P (a leading column); if JPVT(i) = 0, the i-th column of A is a free column. On exit, if JPVT(i) = k, then the i-th column of A*P was the k-th column of A. TAU (output) COMPLEX*16 array, dimension (min(M,N)) The scalar factors of the elementary reflectors. VN1 (input/output) DOUBLE PRECISION array, dimension (N) The vector with the partial column norms. VN2 (input/output) DOUBLE PRECISION array, dimension (N) The vector with the exact column norms. WORK (workspace) COMPLEX*16 array, dimension (N) Further Details =============== Based on contributions by G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain X. Sun, Computer Science Dept., Duke University, USA Partial column norm updating strategy modified by Z. Drmac and Z. Bujanovic, Dept. of Mathematics, University of Zagreb, Croatia. June 2006. For more details see LAPACK Working Note 176. ===================================================================== Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; doublereal d__1; doublecomplex z__1; /* Builtin functions */ double sqrt(doublereal); void d_cnjg(doublecomplex *, doublecomplex *); double z_abs(doublecomplex *); /* Local variables */ static integer i__, j, mn; static doublecomplex aii; static integer pvt; static doublereal temp, temp2, tol3z; static integer offpi, itemp; extern /* Subroutine */ int zlarf_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *), zswap_(integer *, doublecomplex *, integer *, doublecomplex *, integer *); extern doublereal dznrm2_(integer *, doublecomplex *, integer *), dlamch_( char *); extern integer idamax_(integer *, doublereal *, integer *); extern /* Subroutine */ int zlarfg_(integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *); a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --jpvt; --tau; --vn1; --vn2; --work; /* Function Body Computing MIN */ i__1 = *m - *offset; mn = min(i__1,*n); tol3z = sqrt(dlamch_("Epsilon")); /* Compute factorization. */ i__1 = mn; for (i__ = 1; i__ <= i__1; ++i__) { offpi = *offset + i__; /* Determine ith pivot column and swap if necessary. */ i__2 = *n - i__ + 1; pvt = i__ - 1 + idamax_(&i__2, &vn1[i__], &c__1); if (pvt != i__) { zswap_(m, &a[pvt * a_dim1 + 1], &c__1, &a[i__ * a_dim1 + 1], & c__1); itemp = jpvt[pvt]; jpvt[pvt] = jpvt[i__]; jpvt[i__] = itemp; vn1[pvt] = vn1[i__]; vn2[pvt] = vn2[i__]; } /* Generate elementary reflector H(i). */ if (offpi < *m) { i__2 = *m - offpi + 1; zlarfg_(&i__2, &a[offpi + i__ * a_dim1], &a[offpi + 1 + i__ * a_dim1], &c__1, &tau[i__]); } else { zlarfg_(&c__1, &a[*m + i__ * a_dim1], &a[*m + i__ * a_dim1], & c__1, &tau[i__]); } if (i__ < *n) { /* Apply H(i)' to A(offset+i:m,i+1:n) from the left. */ i__2 = offpi + i__ * a_dim1; aii.r = a[i__2].r, aii.i = a[i__2].i; i__2 = offpi + i__ * a_dim1; a[i__2].r = 1., a[i__2].i = 0.; i__2 = *m - offpi + 1; i__3 = *n - i__; d_cnjg(&z__1, &tau[i__]); zlarf_("Left", &i__2, &i__3, &a[offpi + i__ * a_dim1], &c__1, & z__1, &a[offpi + (i__ + 1) * a_dim1], lda, &work[1]); i__2 = offpi + i__ * a_dim1; a[i__2].r = aii.r, a[i__2].i = aii.i; } /* Update partial column norms. */ i__2 = *n; for (j = i__ + 1; j <= i__2; ++j) { if (vn1[j] != 0.) { /* NOTE: The following 4 lines follow from the analysis in Lapack Working Note 176. Computing 2nd power */ d__1 = z_abs(&a[offpi + j * a_dim1]) / vn1[j]; temp = 1. - d__1 * d__1; temp = max(temp,0.); /* Computing 2nd power */ d__1 = vn1[j] / vn2[j]; temp2 = temp * (d__1 * d__1); if (temp2 <= tol3z) { if (offpi < *m) { i__3 = *m - offpi; vn1[j] = dznrm2_(&i__3, &a[offpi + 1 + j * a_dim1], & c__1); vn2[j] = vn1[j]; } else { vn1[j] = 0.; vn2[j] = 0.; } } else { vn1[j] *= sqrt(temp); } } /* L10: */ } /* L20: */ } return 0; /* End of ZLAQP2 */ } /* zlaqp2_ */