#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int zhecon_(char *uplo, integer *n, doublecomplex *a, integer *lda, integer *ipiv, doublereal *anorm, doublereal *rcond, doublecomplex *work, integer *info) { /* -- LAPACK routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH. Purpose ======= ZHECON estimates the reciprocal of the condition number of a complex Hermitian matrix A using the factorization A = U*D*U**H or A = L*D*L**H computed by ZHETRF. An estimate is obtained for norm(inv(A)), and the reciprocal of the condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). Arguments ========= UPLO (input) CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix. = 'U': Upper triangular, form is A = U*D*U**H; = 'L': Lower triangular, form is A = L*D*L**H. N (input) INTEGER The order of the matrix A. N >= 0. A (input) COMPLEX*16 array, dimension (LDA,N) The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ZHETRF. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). IPIV (input) INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by ZHETRF. ANORM (input) DOUBLE PRECISION The 1-norm of the original matrix A. RCOND (output) DOUBLE PRECISION The reciprocal of the condition number of the matrix A, computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an estimate of the 1-norm of inv(A) computed in this routine. WORK (workspace) COMPLEX*16 array, dimension (2*N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value ===================================================================== Test the input parameters. Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; /* Local variables */ static integer i__, kase; extern logical lsame_(char *, char *); static integer isave[3]; static logical upper; extern /* Subroutine */ int zlacn2_(integer *, doublecomplex *, doublecomplex *, doublereal *, integer *, integer *), xerbla_( char *, integer *); static doublereal ainvnm; extern /* Subroutine */ int zhetrs_(char *, integer *, integer *, doublecomplex *, integer *, integer *, doublecomplex *, integer *, integer *); a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --ipiv; --work; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } else if (*anorm < 0.) { *info = -6; } if (*info != 0) { i__1 = -(*info); xerbla_("ZHECON", &i__1); return 0; } /* Quick return if possible */ *rcond = 0.; if (*n == 0) { *rcond = 1.; return 0; } else if (*anorm <= 0.) { return 0; } /* Check that the diagonal matrix D is nonsingular. */ if (upper) { /* Upper triangular storage: examine D from bottom to top */ for (i__ = *n; i__ >= 1; --i__) { i__1 = i__ + i__ * a_dim1; if (ipiv[i__] > 0 && (a[i__1].r == 0. && a[i__1].i == 0.)) { return 0; } /* L10: */ } } else { /* Lower triangular storage: examine D from top to bottom. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = i__ + i__ * a_dim1; if (ipiv[i__] > 0 && (a[i__2].r == 0. && a[i__2].i == 0.)) { return 0; } /* L20: */ } } /* Estimate the 1-norm of the inverse. */ kase = 0; L30: zlacn2_(n, &work[*n + 1], &work[1], &ainvnm, &kase, isave); if (kase != 0) { /* Multiply by inv(L*D*L') or inv(U*D*U'). */ zhetrs_(uplo, n, &c__1, &a[a_offset], lda, &ipiv[1], &work[1], n, info); goto L30; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.) { *rcond = 1. / ainvnm / *anorm; } return 0; /* End of ZHECON */ } /* zhecon_ */