#include "blaswrap.h" /* slasd3.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "f2c.h" /* Table of constant values */ static integer c__1 = 1; static integer c__0 = 0; static real c_b13 = 1.f; static real c_b26 = 0.f; /* Subroutine */ int slasd3_(integer *nl, integer *nr, integer *sqre, integer *k, real *d__, real *q, integer *ldq, real *dsigma, real *u, integer * ldu, real *u2, integer *ldu2, real *vt, integer *ldvt, real *vt2, integer *ldvt2, integer *idxc, integer *ctot, real *z__, integer * info) { /* System generated locals */ integer q_dim1, q_offset, u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1, vt_offset, vt2_dim1, vt2_offset, i__1, i__2; real r__1, r__2; /* Builtin functions */ double sqrt(doublereal), r_sign(real *, real *); /* Local variables */ static integer i__, j, m, n, jc; static real rho; static integer nlp1, nlp2, nrp1; static real temp; extern doublereal snrm2_(integer *, real *, integer *); static integer ctemp; extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); static integer ktemp; extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *); extern doublereal slamc3_(real *, real *); extern /* Subroutine */ int slasd4_(integer *, integer *, real *, real *, real *, real *, real *, real *, integer *), xerbla_(char *, integer *), slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *), slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *); /* -- LAPACK auxiliary routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= SLASD3 finds all the square roots of the roots of the secular equation, as defined by the values in D and Z. It makes the appropriate calls to SLASD4 and then updates the singular vectors by matrix multiplication. This code makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none. SLASD3 is called from SLASD1. Arguments ========= NL (input) INTEGER The row dimension of the upper block. NL >= 1. NR (input) INTEGER The row dimension of the lower block. NR >= 1. SQRE (input) INTEGER = 0: the lower block is an NR-by-NR square matrix. = 1: the lower block is an NR-by-(NR+1) rectangular matrix. The bidiagonal matrix has N = NL + NR + 1 rows and M = N + SQRE >= N columns. K (input) INTEGER The size of the secular equation, 1 =< K = < N. D (output) REAL array, dimension(K) On exit the square roots of the roots of the secular equation, in ascending order. Q (workspace) REAL array, dimension at least (LDQ,K). LDQ (input) INTEGER The leading dimension of the array Q. LDQ >= K. DSIGMA (input/output) REAL array, dimension(K) The first K elements of this array contain the old roots of the deflated updating problem. These are the poles of the secular equation. U (output) REAL array, dimension (LDU, N) The last N - K columns of this matrix contain the deflated left singular vectors. LDU (input) INTEGER The leading dimension of the array U. LDU >= N. U2 (input) REAL array, dimension (LDU2, N) The first K columns of this matrix contain the non-deflated left singular vectors for the split problem. LDU2 (input) INTEGER The leading dimension of the array U2. LDU2 >= N. VT (output) REAL array, dimension (LDVT, M) The last M - K columns of VT' contain the deflated right singular vectors. LDVT (input) INTEGER The leading dimension of the array VT. LDVT >= N. VT2 (input/output) REAL array, dimension (LDVT2, N) The first K columns of VT2' contain the non-deflated right singular vectors for the split problem. LDVT2 (input) INTEGER The leading dimension of the array VT2. LDVT2 >= N. IDXC (input) INTEGER array, dimension (N) The permutation used to arrange the columns of U (and rows of VT) into three groups: the first group contains non-zero entries only at and above (or before) NL +1; the second contains non-zero entries only at and below (or after) NL+2; and the third is dense. The first column of U and the row of VT are treated separately, however. The rows of the singular vectors found by SLASD4 must be likewise permuted before the matrix multiplies can take place. CTOT (input) INTEGER array, dimension (4) A count of the total number of the various types of columns in U (or rows in VT), as described in IDXC. The fourth column type is any column which has been deflated. Z (input/output) REAL array, dimension (K) The first K elements of this array contain the components of the deflation-adjusted updating row vector. INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: if INFO = 1, an singular value did not converge Further Details =============== Based on contributions by Ming Gu and Huan Ren, Computer Science Division, University of California at Berkeley, USA ===================================================================== Test the input parameters. Parameter adjustments */ --d__; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; --dsigma; u_dim1 = *ldu; u_offset = 1 + u_dim1; u -= u_offset; u2_dim1 = *ldu2; u2_offset = 1 + u2_dim1; u2 -= u2_offset; vt_dim1 = *ldvt; vt_offset = 1 + vt_dim1; vt -= vt_offset; vt2_dim1 = *ldvt2; vt2_offset = 1 + vt2_dim1; vt2 -= vt2_offset; --idxc; --ctot; --z__; /* Function Body */ *info = 0; if (*nl < 1) { *info = -1; } else if (*nr < 1) { *info = -2; } else if (*sqre != 1 && *sqre != 0) { *info = -3; } n = *nl + *nr + 1; m = n + *sqre; nlp1 = *nl + 1; nlp2 = *nl + 2; if (*k < 1 || *k > n) { *info = -4; } else if (*ldq < *k) { *info = -7; } else if (*ldu < n) { *info = -10; } else if (*ldu2 < n) { *info = -12; } else if (*ldvt < m) { *info = -14; } else if (*ldvt2 < m) { *info = -16; } if (*info != 0) { i__1 = -(*info); xerbla_("SLASD3", &i__1); return 0; } /* Quick return if possible */ if (*k == 1) { d__[1] = dabs(z__[1]); scopy_(&m, &vt2[vt2_dim1 + 1], ldvt2, &vt[vt_dim1 + 1], ldvt); if (z__[1] > 0.f) { scopy_(&n, &u2[u2_dim1 + 1], &c__1, &u[u_dim1 + 1], &c__1); } else { i__1 = n; for (i__ = 1; i__ <= i__1; ++i__) { u[i__ + u_dim1] = -u2[i__ + u2_dim1]; /* L10: */ } } return 0; } /* Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can be computed with high relative accuracy (barring over/underflow). This is a problem on machines without a guard digit in add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I), which on any of these machines zeros out the bottommost bit of DSIGMA(I) if it is 1; this makes the subsequent subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation occurs. On binary machines with a guard digit (almost all machines) it does not change DSIGMA(I) at all. On hexadecimal and decimal machines with a guard digit, it slightly changes the bottommost bits of DSIGMA(I). It does not account for hexadecimal or decimal machines without guard digits (we know of none). We use a subroutine call to compute 2*DSIGMA(I) to prevent optimizing compilers from eliminating this code. */ i__1 = *k; for (i__ = 1; i__ <= i__1; ++i__) { dsigma[i__] = slamc3_(&dsigma[i__], &dsigma[i__]) - dsigma[i__]; /* L20: */ } /* Keep a copy of Z. */ scopy_(k, &z__[1], &c__1, &q[q_offset], &c__1); /* Normalize Z. */ rho = snrm2_(k, &z__[1], &c__1); slascl_("G", &c__0, &c__0, &rho, &c_b13, k, &c__1, &z__[1], k, info); rho *= rho; /* Find the new singular values. */ i__1 = *k; for (j = 1; j <= i__1; ++j) { slasd4_(k, &j, &dsigma[1], &z__[1], &u[j * u_dim1 + 1], &rho, &d__[j], &vt[j * vt_dim1 + 1], info); /* If the zero finder fails, the computation is terminated. */ if (*info != 0) { return 0; } /* L30: */ } /* Compute updated Z. */ i__1 = *k; for (i__ = 1; i__ <= i__1; ++i__) { z__[i__] = u[i__ + *k * u_dim1] * vt[i__ + *k * vt_dim1]; i__2 = i__ - 1; for (j = 1; j <= i__2; ++j) { z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[ i__] - dsigma[j]) / (dsigma[i__] + dsigma[j]); /* L40: */ } i__2 = *k - 1; for (j = i__; j <= i__2; ++j) { z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[ i__] - dsigma[j + 1]) / (dsigma[i__] + dsigma[j + 1]); /* L50: */ } r__2 = sqrt((r__1 = z__[i__], dabs(r__1))); z__[i__] = r_sign(&r__2, &q[i__ + q_dim1]); /* L60: */ } /* Compute left singular vectors of the modified diagonal matrix, and store related information for the right singular vectors. */ i__1 = *k; for (i__ = 1; i__ <= i__1; ++i__) { vt[i__ * vt_dim1 + 1] = z__[1] / u[i__ * u_dim1 + 1] / vt[i__ * vt_dim1 + 1]; u[i__ * u_dim1 + 1] = -1.f; i__2 = *k; for (j = 2; j <= i__2; ++j) { vt[j + i__ * vt_dim1] = z__[j] / u[j + i__ * u_dim1] / vt[j + i__ * vt_dim1]; u[j + i__ * u_dim1] = dsigma[j] * vt[j + i__ * vt_dim1]; /* L70: */ } temp = snrm2_(k, &u[i__ * u_dim1 + 1], &c__1); q[i__ * q_dim1 + 1] = u[i__ * u_dim1 + 1] / temp; i__2 = *k; for (j = 2; j <= i__2; ++j) { jc = idxc[j]; q[j + i__ * q_dim1] = u[jc + i__ * u_dim1] / temp; /* L80: */ } /* L90: */ } /* Update the left singular vector matrix. */ if (*k == 2) { sgemm_("N", "N", &n, k, k, &c_b13, &u2[u2_offset], ldu2, &q[q_offset], ldq, &c_b26, &u[u_offset], ldu); goto L100; } if (ctot[1] > 0) { sgemm_("N", "N", nl, k, &ctot[1], &c_b13, &u2[(u2_dim1 << 1) + 1], ldu2, &q[q_dim1 + 2], ldq, &c_b26, &u[u_dim1 + 1], ldu); if (ctot[3] > 0) { ktemp = ctot[1] + 2 + ctot[2]; sgemm_("N", "N", nl, k, &ctot[3], &c_b13, &u2[ktemp * u2_dim1 + 1] , ldu2, &q[ktemp + q_dim1], ldq, &c_b13, &u[u_dim1 + 1], ldu); } } else if (ctot[3] > 0) { ktemp = ctot[1] + 2 + ctot[2]; sgemm_("N", "N", nl, k, &ctot[3], &c_b13, &u2[ktemp * u2_dim1 + 1], ldu2, &q[ktemp + q_dim1], ldq, &c_b26, &u[u_dim1 + 1], ldu); } else { slacpy_("F", nl, k, &u2[u2_offset], ldu2, &u[u_offset], ldu); } scopy_(k, &q[q_dim1 + 1], ldq, &u[nlp1 + u_dim1], ldu); ktemp = ctot[1] + 2; ctemp = ctot[2] + ctot[3]; sgemm_("N", "N", nr, k, &ctemp, &c_b13, &u2[nlp2 + ktemp * u2_dim1], ldu2, &q[ktemp + q_dim1], ldq, &c_b26, &u[nlp2 + u_dim1], ldu); /* Generate the right singular vectors. */ L100: i__1 = *k; for (i__ = 1; i__ <= i__1; ++i__) { temp = snrm2_(k, &vt[i__ * vt_dim1 + 1], &c__1); q[i__ + q_dim1] = vt[i__ * vt_dim1 + 1] / temp; i__2 = *k; for (j = 2; j <= i__2; ++j) { jc = idxc[j]; q[i__ + j * q_dim1] = vt[jc + i__ * vt_dim1] / temp; /* L110: */ } /* L120: */ } /* Update the right singular vector matrix. */ if (*k == 2) { sgemm_("N", "N", k, &m, k, &c_b13, &q[q_offset], ldq, &vt2[vt2_offset] , ldvt2, &c_b26, &vt[vt_offset], ldvt); return 0; } ktemp = ctot[1] + 1; sgemm_("N", "N", k, &nlp1, &ktemp, &c_b13, &q[q_dim1 + 1], ldq, &vt2[ vt2_dim1 + 1], ldvt2, &c_b26, &vt[vt_dim1 + 1], ldvt); ktemp = ctot[1] + 2 + ctot[2]; if (ktemp <= *ldvt2) { sgemm_("N", "N", k, &nlp1, &ctot[3], &c_b13, &q[ktemp * q_dim1 + 1], ldq, &vt2[ktemp + vt2_dim1], ldvt2, &c_b13, &vt[vt_dim1 + 1], ldvt); } ktemp = ctot[1] + 1; nrp1 = *nr + *sqre; if (ktemp > 1) { i__1 = *k; for (i__ = 1; i__ <= i__1; ++i__) { q[i__ + ktemp * q_dim1] = q[i__ + q_dim1]; /* L130: */ } i__1 = m; for (i__ = nlp2; i__ <= i__1; ++i__) { vt2[ktemp + i__ * vt2_dim1] = vt2[i__ * vt2_dim1 + 1]; /* L140: */ } } ctemp = ctot[2] + 1 + ctot[3]; sgemm_("N", "N", k, &nrp1, &ctemp, &c_b13, &q[ktemp * q_dim1 + 1], ldq, & vt2[ktemp + nlp2 * vt2_dim1], ldvt2, &c_b26, &vt[nlp2 * vt_dim1 + 1], ldvt); return 0; /* End of SLASD3 */ } /* slasd3_ */