#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int slalsa_(integer *icompq, integer *smlsiz, integer *n, integer *nrhs, real *b, integer *ldb, real *bx, integer *ldbx, real * u, integer *ldu, real *vt, integer *k, real *difl, real *difr, real * z__, real *poles, integer *givptr, integer *givcol, integer *ldgcol, integer *perm, real *givnum, real *c__, real *s, real *work, integer * iwork, integer *info) { /* -- LAPACK routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= SLALSA is an itermediate step in solving the least squares problem by computing the SVD of the coefficient matrix in compact form (The singular vectors are computed as products of simple orthorgonal matrices.). If ICOMPQ = 0, SLALSA applies the inverse of the left singular vector matrix of an upper bidiagonal matrix to the right hand side; and if ICOMPQ = 1, SLALSA applies the right singular vector matrix to the right hand side. The singular vector matrices were generated in compact form by SLALSA. Arguments ========= ICOMPQ (input) INTEGER Specifies whether the left or the right singular vector matrix is involved. = 0: Left singular vector matrix = 1: Right singular vector matrix SMLSIZ (input) INTEGER The maximum size of the subproblems at the bottom of the computation tree. N (input) INTEGER The row and column dimensions of the upper bidiagonal matrix. NRHS (input) INTEGER The number of columns of B and BX. NRHS must be at least 1. B (input/output) REAL array, dimension ( LDB, NRHS ) On input, B contains the right hand sides of the least squares problem in rows 1 through M. On output, B contains the solution X in rows 1 through N. LDB (input) INTEGER The leading dimension of B in the calling subprogram. LDB must be at least max(1,MAX( M, N ) ). BX (output) REAL array, dimension ( LDBX, NRHS ) On exit, the result of applying the left or right singular vector matrix to B. LDBX (input) INTEGER The leading dimension of BX. U (input) REAL array, dimension ( LDU, SMLSIZ ). On entry, U contains the left singular vector matrices of all subproblems at the bottom level. LDU (input) INTEGER, LDU = > N. The leading dimension of arrays U, VT, DIFL, DIFR, POLES, GIVNUM, and Z. VT (input) REAL array, dimension ( LDU, SMLSIZ+1 ). On entry, VT' contains the right singular vector matrices of all subproblems at the bottom level. K (input) INTEGER array, dimension ( N ). DIFL (input) REAL array, dimension ( LDU, NLVL ). where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1. DIFR (input) REAL array, dimension ( LDU, 2 * NLVL ). On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record distances between singular values on the I-th level and singular values on the (I -1)-th level, and DIFR(*, 2 * I) record the normalizing factors of the right singular vectors matrices of subproblems on I-th level. Z (input) REAL array, dimension ( LDU, NLVL ). On entry, Z(1, I) contains the components of the deflation- adjusted updating row vector for subproblems on the I-th level. POLES (input) REAL array, dimension ( LDU, 2 * NLVL ). On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old singular values involved in the secular equations on the I-th level. GIVPTR (input) INTEGER array, dimension ( N ). On entry, GIVPTR( I ) records the number of Givens rotations performed on the I-th problem on the computation tree. GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 * NLVL ). On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the locations of Givens rotations performed on the I-th level on the computation tree. LDGCOL (input) INTEGER, LDGCOL = > N. The leading dimension of arrays GIVCOL and PERM. PERM (input) INTEGER array, dimension ( LDGCOL, NLVL ). On entry, PERM(*, I) records permutations done on the I-th level of the computation tree. GIVNUM (input) REAL array, dimension ( LDU, 2 * NLVL ). On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S- values of Givens rotations performed on the I-th level on the computation tree. C (input) REAL array, dimension ( N ). On entry, if the I-th subproblem is not square, C( I ) contains the C-value of a Givens rotation related to the right null space of the I-th subproblem. S (input) REAL array, dimension ( N ). On entry, if the I-th subproblem is not square, S( I ) contains the S-value of a Givens rotation related to the right null space of the I-th subproblem. WORK (workspace) REAL array. The dimension must be at least N. IWORK (workspace) INTEGER array. The dimension must be at least 3 * N INFO (output) INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. Further Details =============== Based on contributions by Ming Gu and Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA Osni Marques, LBNL/NERSC, USA ===================================================================== Test the input parameters. Parameter adjustments */ /* Table of constant values */ static real c_b7 = 1.f; static real c_b8 = 0.f; static integer c__2 = 2; /* System generated locals */ integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, b_dim1, b_offset, bx_dim1, bx_offset, difl_dim1, difl_offset, difr_dim1, difr_offset, givnum_dim1, givnum_offset, poles_dim1, poles_offset, u_dim1, u_offset, vt_dim1, vt_offset, z_dim1, z_offset, i__1, i__2; /* Builtin functions */ integer pow_ii(integer *, integer *); /* Local variables */ static integer i__, j, i1, ic, lf, nd, ll, nl, nr, im1, nlf, nrf, lvl, ndb1, nlp1, lvl2, nrp1, nlvl, sqre, inode, ndiml; extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); static integer ndimr; extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *), slals0_(integer *, integer *, integer *, integer *, integer *, real *, integer *, real *, integer *, integer *, integer *, integer *, integer *, real *, integer *, real *, real * , real *, real *, integer *, real *, real *, real *, integer *), xerbla_(char *, integer *), slasdt_(integer *, integer *, integer *, integer *, integer *, integer *, integer *); b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; bx_dim1 = *ldbx; bx_offset = 1 + bx_dim1; bx -= bx_offset; givnum_dim1 = *ldu; givnum_offset = 1 + givnum_dim1; givnum -= givnum_offset; poles_dim1 = *ldu; poles_offset = 1 + poles_dim1; poles -= poles_offset; z_dim1 = *ldu; z_offset = 1 + z_dim1; z__ -= z_offset; difr_dim1 = *ldu; difr_offset = 1 + difr_dim1; difr -= difr_offset; difl_dim1 = *ldu; difl_offset = 1 + difl_dim1; difl -= difl_offset; vt_dim1 = *ldu; vt_offset = 1 + vt_dim1; vt -= vt_offset; u_dim1 = *ldu; u_offset = 1 + u_dim1; u -= u_offset; --k; --givptr; perm_dim1 = *ldgcol; perm_offset = 1 + perm_dim1; perm -= perm_offset; givcol_dim1 = *ldgcol; givcol_offset = 1 + givcol_dim1; givcol -= givcol_offset; --c__; --s; --work; --iwork; /* Function Body */ *info = 0; if (*icompq < 0 || *icompq > 1) { *info = -1; } else if (*smlsiz < 3) { *info = -2; } else if (*n < *smlsiz) { *info = -3; } else if (*nrhs < 1) { *info = -4; } else if (*ldb < *n) { *info = -6; } else if (*ldbx < *n) { *info = -8; } else if (*ldu < *n) { *info = -10; } else if (*ldgcol < *n) { *info = -19; } if (*info != 0) { i__1 = -(*info); xerbla_("SLALSA", &i__1); return 0; } /* Book-keeping and setting up the computation tree. */ inode = 1; ndiml = inode + *n; ndimr = ndiml + *n; slasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr], smlsiz); /* The following code applies back the left singular vector factors. For applying back the right singular vector factors, go to 50. */ if (*icompq == 1) { goto L50; } /* The nodes on the bottom level of the tree were solved by SLASDQ. The corresponding left and right singular vector matrices are in explicit form. First apply back the left singular vector matrices. */ ndb1 = (nd + 1) / 2; i__1 = nd; for (i__ = ndb1; i__ <= i__1; ++i__) { /* IC : center row of each node NL : number of rows of left subproblem NR : number of rows of right subproblem NLF: starting row of the left subproblem NRF: starting row of the right subproblem */ i1 = i__ - 1; ic = iwork[inode + i1]; nl = iwork[ndiml + i1]; nr = iwork[ndimr + i1]; nlf = ic - nl; nrf = ic + 1; sgemm_("T", "N", &nl, nrhs, &nl, &c_b7, &u[nlf + u_dim1], ldu, &b[nlf + b_dim1], ldb, &c_b8, &bx[nlf + bx_dim1], ldbx); sgemm_("T", "N", &nr, nrhs, &nr, &c_b7, &u[nrf + u_dim1], ldu, &b[nrf + b_dim1], ldb, &c_b8, &bx[nrf + bx_dim1], ldbx); /* L10: */ } /* Next copy the rows of B that correspond to unchanged rows in the bidiagonal matrix to BX. */ i__1 = nd; for (i__ = 1; i__ <= i__1; ++i__) { ic = iwork[inode + i__ - 1]; scopy_(nrhs, &b[ic + b_dim1], ldb, &bx[ic + bx_dim1], ldbx); /* L20: */ } /* Finally go through the left singular vector matrices of all the other subproblems bottom-up on the tree. */ j = pow_ii(&c__2, &nlvl); sqre = 0; for (lvl = nlvl; lvl >= 1; --lvl) { lvl2 = (lvl << 1) - 1; /* find the first node LF and last node LL on the current level LVL */ if (lvl == 1) { lf = 1; ll = 1; } else { i__1 = lvl - 1; lf = pow_ii(&c__2, &i__1); ll = (lf << 1) - 1; } i__1 = ll; for (i__ = lf; i__ <= i__1; ++i__) { im1 = i__ - 1; ic = iwork[inode + im1]; nl = iwork[ndiml + im1]; nr = iwork[ndimr + im1]; nlf = ic - nl; nrf = ic + 1; --j; slals0_(icompq, &nl, &nr, &sqre, nrhs, &bx[nlf + bx_dim1], ldbx, & b[nlf + b_dim1], ldb, &perm[nlf + lvl * perm_dim1], & givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, & givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 * poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf + lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[ j], &s[j], &work[1], info); /* L30: */ } /* L40: */ } goto L90; /* ICOMPQ = 1: applying back the right singular vector factors. */ L50: /* First now go through the right singular vector matrices of all the tree nodes top-down. */ j = 0; i__1 = nlvl; for (lvl = 1; lvl <= i__1; ++lvl) { lvl2 = (lvl << 1) - 1; /* Find the first node LF and last node LL on the current level LVL. */ if (lvl == 1) { lf = 1; ll = 1; } else { i__2 = lvl - 1; lf = pow_ii(&c__2, &i__2); ll = (lf << 1) - 1; } i__2 = lf; for (i__ = ll; i__ >= i__2; --i__) { im1 = i__ - 1; ic = iwork[inode + im1]; nl = iwork[ndiml + im1]; nr = iwork[ndimr + im1]; nlf = ic - nl; nrf = ic + 1; if (i__ == ll) { sqre = 0; } else { sqre = 1; } ++j; slals0_(icompq, &nl, &nr, &sqre, nrhs, &b[nlf + b_dim1], ldb, &bx[ nlf + bx_dim1], ldbx, &perm[nlf + lvl * perm_dim1], & givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, & givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 * poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf + lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[ j], &s[j], &work[1], info); /* L60: */ } /* L70: */ } /* The nodes on the bottom level of the tree were solved by SLASDQ. The corresponding right singular vector matrices are in explicit form. Apply them back. */ ndb1 = (nd + 1) / 2; i__1 = nd; for (i__ = ndb1; i__ <= i__1; ++i__) { i1 = i__ - 1; ic = iwork[inode + i1]; nl = iwork[ndiml + i1]; nr = iwork[ndimr + i1]; nlp1 = nl + 1; if (i__ == nd) { nrp1 = nr; } else { nrp1 = nr + 1; } nlf = ic - nl; nrf = ic + 1; sgemm_("T", "N", &nlp1, nrhs, &nlp1, &c_b7, &vt[nlf + vt_dim1], ldu, & b[nlf + b_dim1], ldb, &c_b8, &bx[nlf + bx_dim1], ldbx); sgemm_("T", "N", &nrp1, nrhs, &nrp1, &c_b7, &vt[nrf + vt_dim1], ldu, & b[nrf + b_dim1], ldb, &c_b8, &bx[nrf + bx_dim1], ldbx); /* L80: */ } L90: return 0; /* End of SLALSA */ } /* slalsa_ */