#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int slaev2_(real *a, real *b, real *c__, real *rt1, real * rt2, real *cs1, real *sn1) { /* -- LAPACK auxiliary routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= SLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix [ A B ] [ B C ]. On return, RT1 is the eigenvalue of larger absolute value, RT2 is the eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right eigenvector for RT1, giving the decomposition [ CS1 SN1 ] [ A B ] [ CS1 -SN1 ] = [ RT1 0 ] [-SN1 CS1 ] [ B C ] [ SN1 CS1 ] [ 0 RT2 ]. Arguments ========= A (input) REAL The (1,1) element of the 2-by-2 matrix. B (input) REAL The (1,2) element and the conjugate of the (2,1) element of the 2-by-2 matrix. C (input) REAL The (2,2) element of the 2-by-2 matrix. RT1 (output) REAL The eigenvalue of larger absolute value. RT2 (output) REAL The eigenvalue of smaller absolute value. CS1 (output) REAL SN1 (output) REAL The vector (CS1, SN1) is a unit right eigenvector for RT1. Further Details =============== RT1 is accurate to a few ulps barring over/underflow. RT2 may be inaccurate if there is massive cancellation in the determinant A*C-B*B; higher precision or correctly rounded or correctly truncated arithmetic would be needed to compute RT2 accurately in all cases. CS1 and SN1 are accurate to a few ulps barring over/underflow. Overflow is possible only if RT1 is within a factor of 5 of overflow. Underflow is harmless if the input data is 0 or exceeds underflow_threshold / macheps. ===================================================================== Compute the eigenvalues */ /* System generated locals */ real r__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ static real ab, df, cs, ct, tb, sm, tn, rt, adf, acs; static integer sgn1, sgn2; static real acmn, acmx; sm = *a + *c__; df = *a - *c__; adf = dabs(df); tb = *b + *b; ab = dabs(tb); if (dabs(*a) > dabs(*c__)) { acmx = *a; acmn = *c__; } else { acmx = *c__; acmn = *a; } if (adf > ab) { /* Computing 2nd power */ r__1 = ab / adf; rt = adf * sqrt(r__1 * r__1 + 1.f); } else if (adf < ab) { /* Computing 2nd power */ r__1 = adf / ab; rt = ab * sqrt(r__1 * r__1 + 1.f); } else { /* Includes case AB=ADF=0 */ rt = ab * sqrt(2.f); } if (sm < 0.f) { *rt1 = (sm - rt) * .5f; sgn1 = -1; /* Order of execution important. To get fully accurate smaller eigenvalue, next line needs to be executed in higher precision. */ *rt2 = acmx / *rt1 * acmn - *b / *rt1 * *b; } else if (sm > 0.f) { *rt1 = (sm + rt) * .5f; sgn1 = 1; /* Order of execution important. To get fully accurate smaller eigenvalue, next line needs to be executed in higher precision. */ *rt2 = acmx / *rt1 * acmn - *b / *rt1 * *b; } else { /* Includes case RT1 = RT2 = 0 */ *rt1 = rt * .5f; *rt2 = rt * -.5f; sgn1 = 1; } /* Compute the eigenvector */ if (df >= 0.f) { cs = df + rt; sgn2 = 1; } else { cs = df - rt; sgn2 = -1; } acs = dabs(cs); if (acs > ab) { ct = -tb / cs; *sn1 = 1.f / sqrt(ct * ct + 1.f); *cs1 = ct * *sn1; } else { if (ab == 0.f) { *cs1 = 1.f; *sn1 = 0.f; } else { tn = -cs / tb; *cs1 = 1.f / sqrt(tn * tn + 1.f); *sn1 = tn * *cs1; } } if (sgn1 == sgn2) { tn = *cs1; *cs1 = -(*sn1); *sn1 = tn; } return 0; /* End of SLAEV2 */ } /* slaev2_ */