#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int clascl_(char *type__, integer *kl, integer *ku, real * cfrom, real *cto, integer *m, integer *n, complex *a, integer *lda, integer *info) { /* -- LAPACK auxiliary routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= CLASCL multiplies the M by N complex matrix A by the real scalar CTO/CFROM. This is done without over/underflow as long as the final result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that A may be full, upper triangular, lower triangular, upper Hessenberg, or banded. Arguments ========= TYPE (input) CHARACTER*1 TYPE indices the storage type of the input matrix. = 'G': A is a full matrix. = 'L': A is a lower triangular matrix. = 'U': A is an upper triangular matrix. = 'H': A is an upper Hessenberg matrix. = 'B': A is a symmetric band matrix with lower bandwidth KL and upper bandwidth KU and with the only the lower half stored. = 'Q': A is a symmetric band matrix with lower bandwidth KL and upper bandwidth KU and with the only the upper half stored. = 'Z': A is a band matrix with lower bandwidth KL and upper bandwidth KU. KL (input) INTEGER The lower bandwidth of A. Referenced only if TYPE = 'B', 'Q' or 'Z'. KU (input) INTEGER The upper bandwidth of A. Referenced only if TYPE = 'B', 'Q' or 'Z'. CFROM (input) REAL CTO (input) REAL The matrix A is multiplied by CTO/CFROM. A(I,J) is computed without over/underflow if the final result CTO*A(I,J)/CFROM can be represented without over/underflow. CFROM must be nonzero. M (input) INTEGER The number of rows of the matrix A. M >= 0. N (input) INTEGER The number of columns of the matrix A. N >= 0. A (input/output) COMPLEX array, dimension (LDA,N) The matrix to be multiplied by CTO/CFROM. See TYPE for the storage type. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). INFO (output) INTEGER 0 - successful exit <0 - if INFO = -i, the i-th argument had an illegal value. ===================================================================== Test the input arguments Parameter adjustments */ /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; complex q__1; /* Local variables */ static integer i__, j, k1, k2, k3, k4; static real mul, cto1; static logical done; static real ctoc; extern logical lsame_(char *, char *); static integer itype; static real cfrom1; extern doublereal slamch_(char *); static real cfromc; extern /* Subroutine */ int xerbla_(char *, integer *); static real bignum, smlnum; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; /* Function Body */ *info = 0; if (lsame_(type__, "G")) { itype = 0; } else if (lsame_(type__, "L")) { itype = 1; } else if (lsame_(type__, "U")) { itype = 2; } else if (lsame_(type__, "H")) { itype = 3; } else if (lsame_(type__, "B")) { itype = 4; } else if (lsame_(type__, "Q")) { itype = 5; } else if (lsame_(type__, "Z")) { itype = 6; } else { itype = -1; } if (itype == -1) { *info = -1; } else if (*cfrom == 0.f) { *info = -4; } else if (*m < 0) { *info = -6; } else if (*n < 0 || itype == 4 && *n != *m || itype == 5 && *n != *m) { *info = -7; } else if (itype <= 3 && *lda < max(1,*m)) { *info = -9; } else if (itype >= 4) { /* Computing MAX */ i__1 = *m - 1; if (*kl < 0 || *kl > max(i__1,0)) { *info = -2; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = *n - 1; if (*ku < 0 || *ku > max(i__1,0) || (itype == 4 || itype == 5) && *kl != *ku) { *info = -3; } else if (itype == 4 && *lda < *kl + 1 || itype == 5 && *lda < * ku + 1 || itype == 6 && *lda < (*kl << 1) + *ku + 1) { *info = -9; } } } if (*info != 0) { i__1 = -(*info); xerbla_("CLASCL", &i__1); return 0; } /* Quick return if possible */ if (*n == 0 || *m == 0) { return 0; } /* Get machine parameters */ smlnum = slamch_("S"); bignum = 1.f / smlnum; cfromc = *cfrom; ctoc = *cto; L10: cfrom1 = cfromc * smlnum; cto1 = ctoc / bignum; if (dabs(cfrom1) > dabs(ctoc) && ctoc != 0.f) { mul = smlnum; done = FALSE_; cfromc = cfrom1; } else if (dabs(cto1) > dabs(cfromc)) { mul = bignum; done = FALSE_; ctoc = cto1; } else { mul = ctoc / cfromc; done = TRUE_; } if (itype == 0) { /* Full matrix */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = i__ + j * a_dim1; q__1.r = mul * a[i__4].r, q__1.i = mul * a[i__4].i; a[i__3].r = q__1.r, a[i__3].i = q__1.i; /* L20: */ } /* L30: */ } } else if (itype == 1) { /* Lower triangular matrix */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *m; for (i__ = j; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = i__ + j * a_dim1; q__1.r = mul * a[i__4].r, q__1.i = mul * a[i__4].i; a[i__3].r = q__1.r, a[i__3].i = q__1.i; /* L40: */ } /* L50: */ } } else if (itype == 2) { /* Upper triangular matrix */ i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = min(j,*m); for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = i__ + j * a_dim1; q__1.r = mul * a[i__4].r, q__1.i = mul * a[i__4].i; a[i__3].r = q__1.r, a[i__3].i = q__1.i; /* L60: */ } /* L70: */ } } else if (itype == 3) { /* Upper Hessenberg matrix */ i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MIN */ i__3 = j + 1; i__2 = min(i__3,*m); for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = i__ + j * a_dim1; q__1.r = mul * a[i__4].r, q__1.i = mul * a[i__4].i; a[i__3].r = q__1.r, a[i__3].i = q__1.i; /* L80: */ } /* L90: */ } } else if (itype == 4) { /* Lower half of a symmetric band matrix */ k3 = *kl + 1; k4 = *n + 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MIN */ i__3 = k3, i__4 = k4 - j; i__2 = min(i__3,i__4); for (i__ = 1; i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = i__ + j * a_dim1; q__1.r = mul * a[i__4].r, q__1.i = mul * a[i__4].i; a[i__3].r = q__1.r, a[i__3].i = q__1.i; /* L100: */ } /* L110: */ } } else if (itype == 5) { /* Upper half of a symmetric band matrix */ k1 = *ku + 2; k3 = *ku + 1; i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ i__2 = k1 - j; i__3 = k3; for (i__ = max(i__2,1); i__ <= i__3; ++i__) { i__2 = i__ + j * a_dim1; i__4 = i__ + j * a_dim1; q__1.r = mul * a[i__4].r, q__1.i = mul * a[i__4].i; a[i__2].r = q__1.r, a[i__2].i = q__1.i; /* L120: */ } /* L130: */ } } else if (itype == 6) { /* Band matrix */ k1 = *kl + *ku + 2; k2 = *kl + 1; k3 = (*kl << 1) + *ku + 1; k4 = *kl + *ku + 1 + *m; i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ i__3 = k1 - j; /* Computing MIN */ i__4 = k3, i__5 = k4 - j; i__2 = min(i__4,i__5); for (i__ = max(i__3,k2); i__ <= i__2; ++i__) { i__3 = i__ + j * a_dim1; i__4 = i__ + j * a_dim1; q__1.r = mul * a[i__4].r, q__1.i = mul * a[i__4].i; a[i__3].r = q__1.r, a[i__3].i = q__1.i; /* L140: */ } /* L150: */ } } if (! done) { goto L10; } return 0; /* End of CLASCL */ } /* clascl_ */