#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int claev2_(complex *a, complex *b, complex *c__, real *rt1, real *rt2, real *cs1, complex *sn1) { /* -- LAPACK auxiliary routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= CLAEV2 computes the eigendecomposition of a 2-by-2 Hermitian matrix [ A B ] [ CONJG(B) C ]. On return, RT1 is the eigenvalue of larger absolute value, RT2 is the eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right eigenvector for RT1, giving the decomposition [ CS1 CONJG(SN1) ] [ A B ] [ CS1 -CONJG(SN1) ] = [ RT1 0 ] [-SN1 CS1 ] [ CONJG(B) C ] [ SN1 CS1 ] [ 0 RT2 ]. Arguments ========= A (input) COMPLEX The (1,1) element of the 2-by-2 matrix. B (input) COMPLEX The (1,2) element and the conjugate of the (2,1) element of the 2-by-2 matrix. C (input) COMPLEX The (2,2) element of the 2-by-2 matrix. RT1 (output) REAL The eigenvalue of larger absolute value. RT2 (output) REAL The eigenvalue of smaller absolute value. CS1 (output) REAL SN1 (output) COMPLEX The vector (CS1, SN1) is a unit right eigenvector for RT1. Further Details =============== RT1 is accurate to a few ulps barring over/underflow. RT2 may be inaccurate if there is massive cancellation in the determinant A*C-B*B; higher precision or correctly rounded or correctly truncated arithmetic would be needed to compute RT2 accurately in all cases. CS1 and SN1 are accurate to a few ulps barring over/underflow. Overflow is possible only if RT1 is within a factor of 5 of overflow. Underflow is harmless if the input data is 0 or exceeds underflow_threshold / macheps. ===================================================================== */ /* System generated locals */ real r__1, r__2, r__3; complex q__1, q__2; /* Builtin functions */ double c_abs(complex *); void r_cnjg(complex *, complex *); /* Local variables */ static real t; static complex w; extern /* Subroutine */ int slaev2_(real *, real *, real *, real *, real * , real *, real *); if (c_abs(b) == 0.f) { w.r = 1.f, w.i = 0.f; } else { r_cnjg(&q__2, b); r__1 = c_abs(b); q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1; w.r = q__1.r, w.i = q__1.i; } r__1 = a->r; r__2 = c_abs(b); r__3 = c__->r; slaev2_(&r__1, &r__2, &r__3, rt1, rt2, cs1, &t); q__1.r = t * w.r, q__1.i = t * w.i; sn1->r = q__1.r, sn1->i = q__1.i; return 0; /* End of CLAEV2 */ } /* claev2_ */