#include "blaswrap.h" #include "f2c.h" /* Subroutine */ int cgesc2_(integer *n, complex *a, integer *lda, complex * rhs, integer *ipiv, integer *jpiv, real *scale) { /* -- LAPACK auxiliary routine (version 3.1) -- Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. November 2006 Purpose ======= CGESC2 solves a system of linear equations A * X = scale* RHS with a general N-by-N matrix A using the LU factorization with complete pivoting computed by CGETC2. Arguments ========= N (input) INTEGER The number of columns of the matrix A. A (input) COMPLEX array, dimension (LDA, N) On entry, the LU part of the factorization of the n-by-n matrix A computed by CGETC2: A = P * L * U * Q LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1, N). RHS (input/output) COMPLEX array, dimension N. On entry, the right hand side vector b. On exit, the solution vector X. IPIV (input) INTEGER array, dimension (N). The pivot indices; for 1 <= i <= N, row i of the matrix has been interchanged with row IPIV(i). JPIV (input) INTEGER array, dimension (N). The pivot indices; for 1 <= j <= N, column j of the matrix has been interchanged with column JPIV(j). SCALE (output) REAL On exit, SCALE contains the scale factor. SCALE is chosen 0 <= SCALE <= 1 to prevent owerflow in the solution. Further Details =============== Based on contributions by Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden. ===================================================================== Set constant to control overflow Parameter adjustments */ /* Table of constant values */ static integer c__1 = 1; static complex c_b13 = {1.f,0.f}; static integer c_n1 = -1; /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6; real r__1; complex q__1, q__2, q__3; /* Builtin functions */ double c_abs(complex *); void c_div(complex *, complex *, complex *); /* Local variables */ static integer i__, j; static real eps; static complex temp; extern /* Subroutine */ int cscal_(integer *, complex *, complex *, integer *), slabad_(real *, real *); extern integer icamax_(integer *, complex *, integer *); extern doublereal slamch_(char *); static real bignum; extern /* Subroutine */ int claswp_(integer *, complex *, integer *, integer *, integer *, integer *, integer *); static real smlnum; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --rhs; --ipiv; --jpiv; /* Function Body */ eps = slamch_("P"); smlnum = slamch_("S") / eps; bignum = 1.f / smlnum; slabad_(&smlnum, &bignum); /* Apply permutations IPIV to RHS */ i__1 = *n - 1; claswp_(&c__1, &rhs[1], lda, &c__1, &i__1, &ipiv[1], &c__1); /* Solve for L part */ i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *n; for (j = i__ + 1; j <= i__2; ++j) { i__3 = j; i__4 = j; i__5 = j + i__ * a_dim1; i__6 = i__; q__2.r = a[i__5].r * rhs[i__6].r - a[i__5].i * rhs[i__6].i, q__2.i = a[i__5].r * rhs[i__6].i + a[i__5].i * rhs[i__6] .r; q__1.r = rhs[i__4].r - q__2.r, q__1.i = rhs[i__4].i - q__2.i; rhs[i__3].r = q__1.r, rhs[i__3].i = q__1.i; /* L10: */ } /* L20: */ } /* Solve for U part */ *scale = 1.f; /* Check for scaling */ i__ = icamax_(n, &rhs[1], &c__1); if (smlnum * 2.f * c_abs(&rhs[i__]) > c_abs(&a[*n + *n * a_dim1])) { r__1 = c_abs(&rhs[i__]); q__1.r = .5f / r__1, q__1.i = 0.f / r__1; temp.r = q__1.r, temp.i = q__1.i; cscal_(n, &temp, &rhs[1], &c__1); *scale *= temp.r; } for (i__ = *n; i__ >= 1; --i__) { c_div(&q__1, &c_b13, &a[i__ + i__ * a_dim1]); temp.r = q__1.r, temp.i = q__1.i; i__1 = i__; i__2 = i__; q__1.r = rhs[i__2].r * temp.r - rhs[i__2].i * temp.i, q__1.i = rhs[ i__2].r * temp.i + rhs[i__2].i * temp.r; rhs[i__1].r = q__1.r, rhs[i__1].i = q__1.i; i__1 = *n; for (j = i__ + 1; j <= i__1; ++j) { i__2 = i__; i__3 = i__; i__4 = j; i__5 = i__ + j * a_dim1; q__3.r = a[i__5].r * temp.r - a[i__5].i * temp.i, q__3.i = a[i__5] .r * temp.i + a[i__5].i * temp.r; q__2.r = rhs[i__4].r * q__3.r - rhs[i__4].i * q__3.i, q__2.i = rhs[i__4].r * q__3.i + rhs[i__4].i * q__3.r; q__1.r = rhs[i__3].r - q__2.r, q__1.i = rhs[i__3].i - q__2.i; rhs[i__2].r = q__1.r, rhs[i__2].i = q__1.i; /* L30: */ } /* L40: */ } /* Apply permutations JPIV to the solution (RHS) */ i__1 = *n - 1; claswp_(&c__1, &rhs[1], lda, &c__1, &i__1, &jpiv[1], &c_n1); return 0; /* End of CGESC2 */ } /* cgesc2_ */