#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static doublecomplex c_b1 = {0.,0.}; static doublecomplex c_b2 = {1.,0.}; /* Subroutine */ int zget22_(char *transa, char *transe, char *transw, integer *n, doublecomplex *a, integer *lda, doublecomplex *e, integer *lde, doublecomplex *w, doublecomplex *work, doublereal *rwork, doublereal *result) { /* System generated locals */ integer a_dim1, a_offset, e_dim1, e_offset, i__1, i__2, i__3, i__4; doublereal d__1, d__2, d__3, d__4; doublecomplex z__1, z__2; /* Builtin functions */ double d_imag(doublecomplex *); void d_cnjg(doublecomplex *, doublecomplex *); /* Local variables */ integer j; doublereal ulp; integer joff, jcol, jvec; doublereal unfl; integer jrow; doublereal temp1; extern logical lsame_(char *, char *); char norma[1]; doublereal anorm; extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *); char norme[1]; doublereal enorm; doublecomplex wtemp; extern doublereal dlamch_(char *), zlange_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *); doublereal enrmin, enrmax; extern /* Subroutine */ int zlaset_(char *, integer *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *); integer itrnse; doublereal errnrm; integer itrnsw; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZGET22 does an eigenvector check. */ /* The basic test is: */ /* RESULT(1) = | A E - E W | / ( |A| |E| ulp ) */ /* using the 1-norm. It also tests the normalization of E: */ /* RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp ) */ /* j */ /* where E(j) is the j-th eigenvector, and m-norm is the max-norm of a */ /* vector. The max-norm of a complex n-vector x in this case is the */ /* maximum of |re(x(i)| + |im(x(i)| over i = 1, ..., n. */ /* Arguments */ /* ========== */ /* TRANSA (input) CHARACTER*1 */ /* Specifies whether or not A is transposed. */ /* = 'N': No transpose */ /* = 'T': Transpose */ /* = 'C': Conjugate transpose */ /* TRANSE (input) CHARACTER*1 */ /* Specifies whether or not E is transposed. */ /* = 'N': No transpose, eigenvectors are in columns of E */ /* = 'T': Transpose, eigenvectors are in rows of E */ /* = 'C': Conjugate transpose, eigenvectors are in rows of E */ /* TRANSW (input) CHARACTER*1 */ /* Specifies whether or not W is transposed. */ /* = 'N': No transpose */ /* = 'T': Transpose, same as TRANSW = 'N' */ /* = 'C': Conjugate transpose, use -WI(j) instead of WI(j) */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* A (input) COMPLEX*16 array, dimension (LDA,N) */ /* The matrix whose eigenvectors are in E. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* E (input) COMPLEX*16 array, dimension (LDE,N) */ /* The matrix of eigenvectors. If TRANSE = 'N', the eigenvectors */ /* are stored in the columns of E, if TRANSE = 'T' or 'C', the */ /* eigenvectors are stored in the rows of E. */ /* LDE (input) INTEGER */ /* The leading dimension of the array E. LDE >= max(1,N). */ /* W (input) COMPLEX*16 array, dimension (N) */ /* The eigenvalues of A. */ /* WORK (workspace) COMPLEX*16 array, dimension (N*N) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */ /* RESULT (output) DOUBLE PRECISION array, dimension (2) */ /* RESULT(1) = | A E - E W | / ( |A| |E| ulp ) */ /* RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp ) */ /* j */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Initialize RESULT (in case N=0) */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; e_dim1 = *lde; e_offset = 1 + e_dim1; e -= e_offset; --w; --work; --rwork; --result; /* Function Body */ result[1] = 0.; result[2] = 0.; if (*n <= 0) { return 0; } unfl = dlamch_("Safe minimum"); ulp = dlamch_("Precision"); itrnse = 0; itrnsw = 0; *(unsigned char *)norma = 'O'; *(unsigned char *)norme = 'O'; if (lsame_(transa, "T") || lsame_(transa, "C")) { *(unsigned char *)norma = 'I'; } if (lsame_(transe, "T")) { itrnse = 1; *(unsigned char *)norme = 'I'; } else if (lsame_(transe, "C")) { itrnse = 2; *(unsigned char *)norme = 'I'; } if (lsame_(transw, "C")) { itrnsw = 1; } /* Normalization of E: */ enrmin = 1. / ulp; enrmax = 0.; if (itrnse == 0) { i__1 = *n; for (jvec = 1; jvec <= i__1; ++jvec) { temp1 = 0.; i__2 = *n; for (j = 1; j <= i__2; ++j) { /* Computing MAX */ i__3 = j + jvec * e_dim1; d__3 = temp1, d__4 = (d__1 = e[i__3].r, abs(d__1)) + (d__2 = d_imag(&e[j + jvec * e_dim1]), abs(d__2)); temp1 = max(d__3,d__4); /* L10: */ } enrmin = min(enrmin,temp1); enrmax = max(enrmax,temp1); /* L20: */ } } else { i__1 = *n; for (jvec = 1; jvec <= i__1; ++jvec) { rwork[jvec] = 0.; /* L30: */ } i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (jvec = 1; jvec <= i__2; ++jvec) { /* Computing MAX */ i__3 = jvec + j * e_dim1; d__3 = rwork[jvec], d__4 = (d__1 = e[i__3].r, abs(d__1)) + ( d__2 = d_imag(&e[jvec + j * e_dim1]), abs(d__2)); rwork[jvec] = max(d__3,d__4); /* L40: */ } /* L50: */ } i__1 = *n; for (jvec = 1; jvec <= i__1; ++jvec) { /* Computing MIN */ d__1 = enrmin, d__2 = rwork[jvec]; enrmin = min(d__1,d__2); /* Computing MAX */ d__1 = enrmax, d__2 = rwork[jvec]; enrmax = max(d__1,d__2); /* L60: */ } } /* Norm of A: */ /* Computing MAX */ d__1 = zlange_(norma, n, n, &a[a_offset], lda, &rwork[1]); anorm = max(d__1,unfl); /* Norm of E: */ /* Computing MAX */ d__1 = zlange_(norme, n, n, &e[e_offset], lde, &rwork[1]); enorm = max(d__1,ulp); /* Norm of error: */ /* Error = AE - EW */ zlaset_("Full", n, n, &c_b1, &c_b1, &work[1], n); joff = 0; i__1 = *n; for (jcol = 1; jcol <= i__1; ++jcol) { if (itrnsw == 0) { i__2 = jcol; wtemp.r = w[i__2].r, wtemp.i = w[i__2].i; } else { d_cnjg(&z__1, &w[jcol]); wtemp.r = z__1.r, wtemp.i = z__1.i; } if (itrnse == 0) { i__2 = *n; for (jrow = 1; jrow <= i__2; ++jrow) { i__3 = joff + jrow; i__4 = jrow + jcol * e_dim1; z__1.r = e[i__4].r * wtemp.r - e[i__4].i * wtemp.i, z__1.i = e[i__4].r * wtemp.i + e[i__4].i * wtemp.r; work[i__3].r = z__1.r, work[i__3].i = z__1.i; /* L70: */ } } else if (itrnse == 1) { i__2 = *n; for (jrow = 1; jrow <= i__2; ++jrow) { i__3 = joff + jrow; i__4 = jcol + jrow * e_dim1; z__1.r = e[i__4].r * wtemp.r - e[i__4].i * wtemp.i, z__1.i = e[i__4].r * wtemp.i + e[i__4].i * wtemp.r; work[i__3].r = z__1.r, work[i__3].i = z__1.i; /* L80: */ } } else { i__2 = *n; for (jrow = 1; jrow <= i__2; ++jrow) { i__3 = joff + jrow; d_cnjg(&z__2, &e[jcol + jrow * e_dim1]); z__1.r = z__2.r * wtemp.r - z__2.i * wtemp.i, z__1.i = z__2.r * wtemp.i + z__2.i * wtemp.r; work[i__3].r = z__1.r, work[i__3].i = z__1.i; /* L90: */ } } joff += *n; /* L100: */ } z__1.r = -1., z__1.i = -0.; zgemm_(transa, transe, n, n, n, &c_b2, &a[a_offset], lda, &e[e_offset], lde, &z__1, &work[1], n); errnrm = zlange_("One", n, n, &work[1], n, &rwork[1]) / enorm; /* Compute RESULT(1) (avoiding under/overflow) */ if (anorm > errnrm) { result[1] = errnrm / anorm / ulp; } else { if (anorm < 1.) { result[1] = min(errnrm,anorm) / anorm / ulp; } else { /* Computing MIN */ d__1 = errnrm / anorm; result[1] = min(d__1,1.) / ulp; } } /* Compute RESULT(2) : the normalization error in E. */ /* Computing MAX */ d__3 = (d__1 = enrmax - 1., abs(d__1)), d__4 = (d__2 = enrmin - 1., abs( d__2)); result[2] = max(d__3,d__4) / ((doublereal) (*n) * ulp); return 0; /* End of ZGET22 */ } /* zget22_ */