#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static real c_b7 = -1.f; static real c_b9 = 1.f; /* Subroutine */ int sbdt01_(integer *m, integer *n, integer *kd, real *a, integer *lda, real *q, integer *ldq, real *d__, real *e, real *pt, integer *ldpt, real *work, real *resid) { /* System generated locals */ integer a_dim1, a_offset, pt_dim1, pt_offset, q_dim1, q_offset, i__1, i__2; real r__1, r__2; /* Local variables */ integer i__, j; real eps, anorm; extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *); extern doublereal sasum_(integer *, real *, integer *); extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *); extern doublereal slamch_(char *), slange_(char *, integer *, integer *, real *, integer *, real *); /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SBDT01 reconstructs a general matrix A from its bidiagonal form */ /* A = Q * B * P' */ /* where Q (m by min(m,n)) and P' (min(m,n) by n) are orthogonal */ /* matrices and B is bidiagonal. */ /* The test ratio to test the reduction is */ /* RESID = norm( A - Q * B * PT ) / ( n * norm(A) * EPS ) */ /* where PT = P' and EPS is the machine precision. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrices A and Q. */ /* N (input) INTEGER */ /* The number of columns of the matrices A and P'. */ /* KD (input) INTEGER */ /* If KD = 0, B is diagonal and the array E is not referenced. */ /* If KD = 1, the reduction was performed by xGEBRD; B is upper */ /* bidiagonal if M >= N, and lower bidiagonal if M < N. */ /* If KD = -1, the reduction was performed by xGBBRD; B is */ /* always upper bidiagonal. */ /* A (input) REAL array, dimension (LDA,N) */ /* The m by n matrix A. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* Q (input) REAL array, dimension (LDQ,N) */ /* The m by min(m,n) orthogonal matrix Q in the reduction */ /* A = Q * B * P'. */ /* LDQ (input) INTEGER */ /* The leading dimension of the array Q. LDQ >= max(1,M). */ /* D (input) REAL array, dimension (min(M,N)) */ /* The diagonal elements of the bidiagonal matrix B. */ /* E (input) REAL array, dimension (min(M,N)-1) */ /* The superdiagonal elements of the bidiagonal matrix B if */ /* m >= n, or the subdiagonal elements of B if m < n. */ /* PT (input) REAL array, dimension (LDPT,N) */ /* The min(m,n) by n orthogonal matrix P' in the reduction */ /* A = Q * B * P'. */ /* LDPT (input) INTEGER */ /* The leading dimension of the array PT. */ /* LDPT >= max(1,min(M,N)). */ /* WORK (workspace) REAL array, dimension (M+N) */ /* RESID (output) REAL */ /* The test ratio: norm(A - Q * B * P') / ( n * norm(A) * EPS ) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick return if possible */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; --d__; --e; pt_dim1 = *ldpt; pt_offset = 1 + pt_dim1; pt -= pt_offset; --work; /* Function Body */ if (*m <= 0 || *n <= 0) { *resid = 0.f; return 0; } /* Compute A - Q * B * P' one column at a time. */ *resid = 0.f; if (*kd != 0) { /* B is bidiagonal. */ if (*kd != 0 && *m >= *n) { /* B is upper bidiagonal and M >= N. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { scopy_(m, &a[j * a_dim1 + 1], &c__1, &work[1], &c__1); i__2 = *n - 1; for (i__ = 1; i__ <= i__2; ++i__) { work[*m + i__] = d__[i__] * pt[i__ + j * pt_dim1] + e[i__] * pt[i__ + 1 + j * pt_dim1]; /* L10: */ } work[*m + *n] = d__[*n] * pt[*n + j * pt_dim1]; sgemv_("No transpose", m, n, &c_b7, &q[q_offset], ldq, &work[* m + 1], &c__1, &c_b9, &work[1], &c__1); /* Computing MAX */ r__1 = *resid, r__2 = sasum_(m, &work[1], &c__1); *resid = dmax(r__1,r__2); /* L20: */ } } else if (*kd < 0) { /* B is upper bidiagonal and M < N. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { scopy_(m, &a[j * a_dim1 + 1], &c__1, &work[1], &c__1); i__2 = *m - 1; for (i__ = 1; i__ <= i__2; ++i__) { work[*m + i__] = d__[i__] * pt[i__ + j * pt_dim1] + e[i__] * pt[i__ + 1 + j * pt_dim1]; /* L30: */ } work[*m + *m] = d__[*m] * pt[*m + j * pt_dim1]; sgemv_("No transpose", m, m, &c_b7, &q[q_offset], ldq, &work[* m + 1], &c__1, &c_b9, &work[1], &c__1); /* Computing MAX */ r__1 = *resid, r__2 = sasum_(m, &work[1], &c__1); *resid = dmax(r__1,r__2); /* L40: */ } } else { /* B is lower bidiagonal. */ i__1 = *n; for (j = 1; j <= i__1; ++j) { scopy_(m, &a[j * a_dim1 + 1], &c__1, &work[1], &c__1); work[*m + 1] = d__[1] * pt[j * pt_dim1 + 1]; i__2 = *m; for (i__ = 2; i__ <= i__2; ++i__) { work[*m + i__] = e[i__ - 1] * pt[i__ - 1 + j * pt_dim1] + d__[i__] * pt[i__ + j * pt_dim1]; /* L50: */ } sgemv_("No transpose", m, m, &c_b7, &q[q_offset], ldq, &work[* m + 1], &c__1, &c_b9, &work[1], &c__1); /* Computing MAX */ r__1 = *resid, r__2 = sasum_(m, &work[1], &c__1); *resid = dmax(r__1,r__2); /* L60: */ } } } else { /* B is diagonal. */ if (*m >= *n) { i__1 = *n; for (j = 1; j <= i__1; ++j) { scopy_(m, &a[j * a_dim1 + 1], &c__1, &work[1], &c__1); i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { work[*m + i__] = d__[i__] * pt[i__ + j * pt_dim1]; /* L70: */ } sgemv_("No transpose", m, n, &c_b7, &q[q_offset], ldq, &work[* m + 1], &c__1, &c_b9, &work[1], &c__1); /* Computing MAX */ r__1 = *resid, r__2 = sasum_(m, &work[1], &c__1); *resid = dmax(r__1,r__2); /* L80: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { scopy_(m, &a[j * a_dim1 + 1], &c__1, &work[1], &c__1); i__2 = *m; for (i__ = 1; i__ <= i__2; ++i__) { work[*m + i__] = d__[i__] * pt[i__ + j * pt_dim1]; /* L90: */ } sgemv_("No transpose", m, m, &c_b7, &q[q_offset], ldq, &work[* m + 1], &c__1, &c_b9, &work[1], &c__1); /* Computing MAX */ r__1 = *resid, r__2 = sasum_(m, &work[1], &c__1); *resid = dmax(r__1,r__2); /* L100: */ } } } /* Compute norm(A - Q * B * P') / ( n * norm(A) * EPS ) */ anorm = slange_("1", m, n, &a[a_offset], lda, &work[1]); eps = slamch_("Precision"); if (anorm <= 0.f) { if (*resid != 0.f) { *resid = 1.f / eps; } } else { if (anorm >= *resid) { *resid = *resid / anorm / ((real) (*n) * eps); } else { if (anorm < 1.f) { /* Computing MIN */ r__1 = *resid, r__2 = (real) (*n) * anorm; *resid = dmin(r__1,r__2) / anorm / ((real) (*n) * eps); } else { /* Computing MIN */ r__1 = *resid / anorm, r__2 = (real) (*n); *resid = dmin(r__1,r__2) / ((real) (*n) * eps); } } } return 0; /* End of SBDT01 */ } /* sbdt01_ */