#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
/* Subroutine */ int zspsvx_(char *fact, char *uplo, integer *n, integer *
nrhs, doublecomplex *ap, doublecomplex *afp, integer *ipiv,
doublecomplex *b, integer *ldb, doublecomplex *x, integer *ldx,
doublereal *rcond, doublereal *ferr, doublereal *berr, doublecomplex *
work, doublereal *rwork, integer *info)
{
/* System generated locals */
integer b_dim1, b_offset, x_dim1, x_offset, i__1;
/* Local variables */
extern logical lsame_(char *, char *);
doublereal anorm;
extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
doublecomplex *, integer *);
extern doublereal dlamch_(char *);
logical nofact;
extern /* Subroutine */ int xerbla_(char *, integer *), zlacpy_(
char *, integer *, integer *, doublecomplex *, integer *,
doublecomplex *, integer *);
extern doublereal zlansp_(char *, char *, integer *, doublecomplex *,
doublereal *);
extern /* Subroutine */ int zspcon_(char *, integer *, doublecomplex *,
integer *, doublereal *, doublereal *, doublecomplex *, integer *), zsprfs_(char *, integer *, integer *, doublecomplex *,
doublecomplex *, integer *, doublecomplex *, integer *,
doublecomplex *, integer *, doublereal *, doublereal *,
doublecomplex *, doublereal *, integer *), zsptrf_(char *,
integer *, doublecomplex *, integer *, integer *),
zsptrs_(char *, integer *, integer *, doublecomplex *, integer *,
doublecomplex *, integer *, integer *);
/* -- LAPACK driver routine (version 3.1) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* ZSPSVX uses the diagonal pivoting factorization A = U*D*U**T or */
/* A = L*D*L**T to compute the solution to a complex system of linear */
/* equations A * X = B, where A is an N-by-N symmetric matrix stored */
/* in packed format and X and B are N-by-NRHS matrices. */
/* Error bounds on the solution and a condition estimate are also */
/* provided. */
/* Description */
/* =========== */
/* The following steps are performed: */
/* 1. If FACT = 'N', the diagonal pivoting method is used to factor A as */
/* A = U * D * U**T, if UPLO = 'U', or */
/* A = L * D * L**T, if UPLO = 'L', */
/* where U (or L) is a product of permutation and unit upper (lower) */
/* triangular matrices and D is symmetric and block diagonal with */
/* 1-by-1 and 2-by-2 diagonal blocks. */
/* 2. If some D(i,i)=0, so that D is exactly singular, then the routine */
/* returns with INFO = i. Otherwise, the factored form of A is used */
/* to estimate the condition number of the matrix A. If the */
/* reciprocal of the condition number is less than machine precision, */
/* INFO = N+1 is returned as a warning, but the routine still goes on */
/* to solve for X and compute error bounds as described below. */
/* 3. The system of equations is solved for X using the factored form */
/* of A. */
/* 4. Iterative refinement is applied to improve the computed solution */
/* matrix and calculate error bounds and backward error estimates */
/* for it. */
/* Arguments */
/* ========= */
/* FACT (input) CHARACTER*1 */
/* Specifies whether or not the factored form of A has been */
/* supplied on entry. */
/* = 'F': On entry, AFP and IPIV contain the factored form */
/* of A. AP, AFP and IPIV will not be modified. */
/* = 'N': The matrix A will be copied to AFP and factored. */
/* UPLO (input) CHARACTER*1 */
/* = 'U': Upper triangle of A is stored; */
/* = 'L': Lower triangle of A is stored. */
/* N (input) INTEGER */
/* The number of linear equations, i.e., the order of the */
/* matrix A. N >= 0. */
/* NRHS (input) INTEGER */
/* The number of right hand sides, i.e., the number of columns */
/* of the matrices B and X. NRHS >= 0. */
/* AP (input) COMPLEX*16 array, dimension (N*(N+1)/2) */
/* The upper or lower triangle of the symmetric matrix A, packed */
/* columnwise in a linear array. The j-th column of A is stored */
/* in the array AP as follows: */
/* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
/* See below for further details. */
/* AFP (input or output) COMPLEX*16 array, dimension (N*(N+1)/2) */
/* If FACT = 'F', then AFP is an input argument and on entry */
/* contains the block diagonal matrix D and the multipliers used */
/* to obtain the factor U or L from the factorization */
/* A = U*D*U**T or A = L*D*L**T as computed by ZSPTRF, stored as */
/* a packed triangular matrix in the same storage format as A. */
/* If FACT = 'N', then AFP is an output argument and on exit */
/* contains the block diagonal matrix D and the multipliers used */
/* to obtain the factor U or L from the factorization */
/* A = U*D*U**T or A = L*D*L**T as computed by ZSPTRF, stored as */
/* a packed triangular matrix in the same storage format as A. */
/* IPIV (input or output) INTEGER array, dimension (N) */
/* If FACT = 'F', then IPIV is an input argument and on entry */
/* contains details of the interchanges and the block structure */
/* of D, as determined by ZSPTRF. */
/* If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
/* interchanged and D(k,k) is a 1-by-1 diagonal block. */
/* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */
/* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
/* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = */
/* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */
/* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
/* If FACT = 'N', then IPIV is an output argument and on exit */
/* contains details of the interchanges and the block structure */
/* of D, as determined by ZSPTRF. */
/* B (input) COMPLEX*16 array, dimension (LDB,NRHS) */
/* The N-by-NRHS right hand side matrix B. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,N). */
/* X (output) COMPLEX*16 array, dimension (LDX,NRHS) */
/* If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X. */
/* LDX (input) INTEGER */
/* The leading dimension of the array X. LDX >= max(1,N). */
/* RCOND (output) DOUBLE PRECISION */
/* The estimate of the reciprocal condition number of the matrix */
/* A. If RCOND is less than the machine precision (in */
/* particular, if RCOND = 0), the matrix is singular to working */
/* precision. This condition is indicated by a return code of */
/* INFO > 0. */
/* FERR (output) DOUBLE PRECISION array, dimension (NRHS) */
/* The estimated forward error bound for each solution vector */
/* X(j) (the j-th column of the solution matrix X). */
/* If XTRUE is the true solution corresponding to X(j), FERR(j) */
/* is an estimated upper bound for the magnitude of the largest */
/* element in (X(j) - XTRUE) divided by the magnitude of the */
/* largest element in X(j). The estimate is as reliable as */
/* the estimate for RCOND, and is almost always a slight */
/* overestimate of the true error. */
/* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */
/* The componentwise relative backward error of each solution */
/* vector X(j) (i.e., the smallest relative change in */
/* any element of A or B that makes X(j) an exact solution). */
/* WORK (workspace) COMPLEX*16 array, dimension (2*N) */
/* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: if INFO = i, and i is */
/* <= N: D(i,i) is exactly zero. The factorization */
/* has been completed but the factor D is exactly */
/* singular, so the solution and error bounds could */
/* not be computed. RCOND = 0 is returned. */
/* = N+1: D is nonsingular, but RCOND is less than machine */
/* precision, meaning that the matrix is singular */
/* to working precision. Nevertheless, the */
/* solution and error bounds are computed because */
/* there are a number of situations where the */
/* computed solution can be more accurate than the */
/* value of RCOND would suggest. */
/* Further Details */
/* =============== */
/* The packed storage scheme is illustrated by the following example */
/* when N = 4, UPLO = 'U': */
/* Two-dimensional storage of the symmetric matrix A: */
/* a11 a12 a13 a14 */
/* a22 a23 a24 */
/* a33 a34 (aij = aji) */
/* a44 */
/* Packed storage of the upper triangle of A: */
/* AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
--ap;
--afp;
--ipiv;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
x_dim1 = *ldx;
x_offset = 1 + x_dim1;
x -= x_offset;
--ferr;
--berr;
--work;
--rwork;
/* Function Body */
*info = 0;
nofact = lsame_(fact, "N");
if (! nofact && ! lsame_(fact, "F")) {
*info = -1;
} else if (! lsame_(uplo, "U") && ! lsame_(uplo,
"L")) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*nrhs < 0) {
*info = -4;
} else if (*ldb < max(1,*n)) {
*info = -9;
} else if (*ldx < max(1,*n)) {
*info = -11;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZSPSVX", &i__1);
return 0;
}
if (nofact) {
/* Compute the factorization A = U*D*U' or A = L*D*L'. */
i__1 = *n * (*n + 1) / 2;
zcopy_(&i__1, &ap[1], &c__1, &afp[1], &c__1);
zsptrf_(uplo, n, &afp[1], &ipiv[1], info);
/* Return if INFO is non-zero. */
if (*info > 0) {
*rcond = 0.;
return 0;
}
}
/* Compute the norm of the matrix A. */
anorm = zlansp_("I", uplo, n, &ap[1], &rwork[1]);
/* Compute the reciprocal of the condition number of A. */
zspcon_(uplo, n, &afp[1], &ipiv[1], &anorm, rcond, &work[1], info);
/* Compute the solution vectors X. */
zlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
zsptrs_(uplo, n, nrhs, &afp[1], &ipiv[1], &x[x_offset], ldx, info);
/* Use iterative refinement to improve the computed solutions and */
/* compute error bounds and backward error estimates for them. */
zsprfs_(uplo, n, nrhs, &ap[1], &afp[1], &ipiv[1], &b[b_offset], ldb, &x[
x_offset], ldx, &ferr[1], &berr[1], &work[1], &rwork[1], info);
/* Set INFO = N+1 if the matrix is singular to working precision. */
if (*rcond < dlamch_("Epsilon")) {
*info = *n + 1;
}
return 0;
/* End of ZSPSVX */
} /* zspsvx_ */