#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static doublecomplex c_b1 = {0.,0.}; static doublecomplex c_b2 = {1.,0.}; static integer c__1 = 1; /* Subroutine */ int zlahr2_(integer *n, integer *k, integer *nb, doublecomplex *a, integer *lda, doublecomplex *tau, doublecomplex *t, integer *ldt, doublecomplex *y, integer *ldy) { /* System generated locals */ integer a_dim1, a_offset, t_dim1, t_offset, y_dim1, y_offset, i__1, i__2, i__3; doublecomplex z__1; /* Local variables */ integer i__; doublecomplex ei; extern /* Subroutine */ int zscal_(integer *, doublecomplex *, doublecomplex *, integer *), zgemm_(char *, char *, integer *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *), zgemv_(char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *), zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), ztrmm_(char *, char *, char *, char *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *), zaxpy_(integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *), ztrmv_(char *, char *, char *, integer *, doublecomplex *, integer *, doublecomplex *, integer *), zlarfg_(integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *), zlacgv_(integer *, doublecomplex *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); /* -- LAPACK auxiliary routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZLAHR2 reduces the first NB columns of A complex general n-BY-(n-k+1) */ /* matrix A so that elements below the k-th subdiagonal are zero. The */ /* reduction is performed by an unitary similarity transformation */ /* Q' * A * Q. The routine returns the matrices V and T which determine */ /* Q as a block reflector I - V*T*V', and also the matrix Y = A * V * T. */ /* This is an auxiliary routine called by ZGEHRD. */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The order of the matrix A. */ /* K (input) INTEGER */ /* The offset for the reduction. Elements below the k-th */ /* subdiagonal in the first NB columns are reduced to zero. */ /* K < N. */ /* NB (input) INTEGER */ /* The number of columns to be reduced. */ /* A (input/output) COMPLEX*16 array, dimension (LDA,N-K+1) */ /* On entry, the n-by-(n-k+1) general matrix A. */ /* On exit, the elements on and above the k-th subdiagonal in */ /* the first NB columns are overwritten with the corresponding */ /* elements of the reduced matrix; the elements below the k-th */ /* subdiagonal, with the array TAU, represent the matrix Q as a */ /* product of elementary reflectors. The other columns of A are */ /* unchanged. See Further Details. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* TAU (output) COMPLEX*16 array, dimension (NB) */ /* The scalar factors of the elementary reflectors. See Further */ /* Details. */ /* T (output) COMPLEX*16 array, dimension (LDT,NB) */ /* The upper triangular matrix T. */ /* LDT (input) INTEGER */ /* The leading dimension of the array T. LDT >= NB. */ /* Y (output) COMPLEX*16 array, dimension (LDY,NB) */ /* The n-by-nb matrix Y. */ /* LDY (input) INTEGER */ /* The leading dimension of the array Y. LDY >= N. */ /* Further Details */ /* =============== */ /* The matrix Q is represented as a product of nb elementary reflectors */ /* Q = H(1) H(2) . . . H(nb). */ /* Each H(i) has the form */ /* H(i) = I - tau * v * v' */ /* where tau is a complex scalar, and v is a complex vector with */ /* v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in */ /* A(i+k+1:n,i), and tau in TAU(i). */ /* The elements of the vectors v together form the (n-k+1)-by-nb matrix */ /* V which is needed, with T and Y, to apply the transformation to the */ /* unreduced part of the matrix, using an update of the form: */ /* A := (I - V*T*V') * (A - Y*V'). */ /* The contents of A on exit are illustrated by the following example */ /* with n = 7, k = 3 and nb = 2: */ /* ( a a a a a ) */ /* ( a a a a a ) */ /* ( a a a a a ) */ /* ( h h a a a ) */ /* ( v1 h a a a ) */ /* ( v1 v2 a a a ) */ /* ( v1 v2 a a a ) */ /* where a denotes an element of the original matrix A, h denotes a */ /* modified element of the upper Hessenberg matrix H, and vi denotes an */ /* element of the vector defining H(i). */ /* This file is a slight modification of LAPACK-3.0's ZLAHRD */ /* incorporating improvements proposed by Quintana-Orti and Van de */ /* Gejin. Note that the entries of A(1:K,2:NB) differ from those */ /* returned by the original LAPACK routine. This function is */ /* not backward compatible with LAPACK3.0. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Quick return if possible */ /* Parameter adjustments */ --tau; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; t_dim1 = *ldt; t_offset = 1 + t_dim1; t -= t_offset; y_dim1 = *ldy; y_offset = 1 + y_dim1; y -= y_offset; /* Function Body */ if (*n <= 1) { return 0; } i__1 = *nb; for (i__ = 1; i__ <= i__1; ++i__) { if (i__ > 1) { /* Update A(K+1:N,I) */ /* Update I-th column of A - Y * V' */ i__2 = i__ - 1; zlacgv_(&i__2, &a[*k + i__ - 1 + a_dim1], lda); i__2 = *n - *k; i__3 = i__ - 1; z__1.r = -1., z__1.i = -0.; zgemv_("NO TRANSPOSE", &i__2, &i__3, &z__1, &y[*k + 1 + y_dim1], ldy, &a[*k + i__ - 1 + a_dim1], lda, &c_b2, &a[*k + 1 + i__ * a_dim1], &c__1); i__2 = i__ - 1; zlacgv_(&i__2, &a[*k + i__ - 1 + a_dim1], lda); /* Apply I - V * T' * V' to this column (call it b) from the */ /* left, using the last column of T as workspace */ /* Let V = ( V1 ) and b = ( b1 ) (first I-1 rows) */ /* ( V2 ) ( b2 ) */ /* where V1 is unit lower triangular */ /* w := V1' * b1 */ i__2 = i__ - 1; zcopy_(&i__2, &a[*k + 1 + i__ * a_dim1], &c__1, &t[*nb * t_dim1 + 1], &c__1); i__2 = i__ - 1; ztrmv_("Lower", "Conjugate transpose", "UNIT", &i__2, &a[*k + 1 + a_dim1], lda, &t[*nb * t_dim1 + 1], &c__1); /* w := w + V2'*b2 */ i__2 = *n - *k - i__ + 1; i__3 = i__ - 1; zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[*k + i__ + a_dim1], lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b2, & t[*nb * t_dim1 + 1], &c__1); /* w := T'*w */ i__2 = i__ - 1; ztrmv_("Upper", "Conjugate transpose", "NON-UNIT", &i__2, &t[ t_offset], ldt, &t[*nb * t_dim1 + 1], &c__1); /* b2 := b2 - V2*w */ i__2 = *n - *k - i__ + 1; i__3 = i__ - 1; z__1.r = -1., z__1.i = -0.; zgemv_("NO TRANSPOSE", &i__2, &i__3, &z__1, &a[*k + i__ + a_dim1], lda, &t[*nb * t_dim1 + 1], &c__1, &c_b2, &a[*k + i__ + i__ * a_dim1], &c__1); /* b1 := b1 - V1*w */ i__2 = i__ - 1; ztrmv_("Lower", "NO TRANSPOSE", "UNIT", &i__2, &a[*k + 1 + a_dim1] , lda, &t[*nb * t_dim1 + 1], &c__1); i__2 = i__ - 1; z__1.r = -1., z__1.i = -0.; zaxpy_(&i__2, &z__1, &t[*nb * t_dim1 + 1], &c__1, &a[*k + 1 + i__ * a_dim1], &c__1); i__2 = *k + i__ - 1 + (i__ - 1) * a_dim1; a[i__2].r = ei.r, a[i__2].i = ei.i; } /* Generate the elementary reflector H(I) to annihilate */ /* A(K+I+1:N,I) */ i__2 = *n - *k - i__ + 1; /* Computing MIN */ i__3 = *k + i__ + 1; zlarfg_(&i__2, &a[*k + i__ + i__ * a_dim1], &a[min(i__3, *n)+ i__ * a_dim1], &c__1, &tau[i__]); i__2 = *k + i__ + i__ * a_dim1; ei.r = a[i__2].r, ei.i = a[i__2].i; i__2 = *k + i__ + i__ * a_dim1; a[i__2].r = 1., a[i__2].i = 0.; /* Compute Y(K+1:N,I) */ i__2 = *n - *k; i__3 = *n - *k - i__ + 1; zgemv_("NO TRANSPOSE", &i__2, &i__3, &c_b2, &a[*k + 1 + (i__ + 1) * a_dim1], lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b1, &y[* k + 1 + i__ * y_dim1], &c__1); i__2 = *n - *k - i__ + 1; i__3 = i__ - 1; zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[*k + i__ + a_dim1], lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b1, &t[ i__ * t_dim1 + 1], &c__1); i__2 = *n - *k; i__3 = i__ - 1; z__1.r = -1., z__1.i = -0.; zgemv_("NO TRANSPOSE", &i__2, &i__3, &z__1, &y[*k + 1 + y_dim1], ldy, &t[i__ * t_dim1 + 1], &c__1, &c_b2, &y[*k + 1 + i__ * y_dim1], &c__1); i__2 = *n - *k; zscal_(&i__2, &tau[i__], &y[*k + 1 + i__ * y_dim1], &c__1); /* Compute T(1:I,I) */ i__2 = i__ - 1; i__3 = i__; z__1.r = -tau[i__3].r, z__1.i = -tau[i__3].i; zscal_(&i__2, &z__1, &t[i__ * t_dim1 + 1], &c__1); i__2 = i__ - 1; ztrmv_("Upper", "No Transpose", "NON-UNIT", &i__2, &t[t_offset], ldt, &t[i__ * t_dim1 + 1], &c__1) ; i__2 = i__ + i__ * t_dim1; i__3 = i__; t[i__2].r = tau[i__3].r, t[i__2].i = tau[i__3].i; /* L10: */ } i__1 = *k + *nb + *nb * a_dim1; a[i__1].r = ei.r, a[i__1].i = ei.i; /* Compute Y(1:K,1:NB) */ zlacpy_("ALL", k, nb, &a[(a_dim1 << 1) + 1], lda, &y[y_offset], ldy); ztrmm_("RIGHT", "Lower", "NO TRANSPOSE", "UNIT", k, nb, &c_b2, &a[*k + 1 + a_dim1], lda, &y[y_offset], ldy); if (*n > *k + *nb) { i__1 = *n - *k - *nb; zgemm_("NO TRANSPOSE", "NO TRANSPOSE", k, nb, &i__1, &c_b2, &a[(*nb + 2) * a_dim1 + 1], lda, &a[*k + 1 + *nb + a_dim1], lda, &c_b2, &y[y_offset], ldy); } ztrmm_("RIGHT", "Upper", "NO TRANSPOSE", "NON-UNIT", k, nb, &c_b2, &t[ t_offset], ldt, &y[y_offset], ldy); return 0; /* End of ZLAHR2 */ } /* zlahr2_ */