#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static doublecomplex c_b2 = {0.,0.}; static integer c__1 = 1; /* Subroutine */ int zhetd2_(char *uplo, integer *n, doublecomplex *a, integer *lda, doublereal *d__, doublereal *e, doublecomplex *tau, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2, i__3; doublereal d__1; doublecomplex z__1, z__2, z__3, z__4; /* Local variables */ integer i__; doublecomplex taui; extern /* Subroutine */ int zher2_(char *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); doublecomplex alpha; extern logical lsame_(char *, char *); extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); extern /* Subroutine */ int zhemv_(char *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *); logical upper; extern /* Subroutine */ int zaxpy_(integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *), xerbla_( char *, integer *), zlarfg_(integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *); /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZHETD2 reduces a complex Hermitian matrix A to real symmetric */ /* tridiagonal form T by a unitary similarity transformation: */ /* Q' * A * Q = T. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the upper or lower triangular part of the */ /* Hermitian matrix A is stored: */ /* = 'U': Upper triangular */ /* = 'L': Lower triangular */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* A (input/output) COMPLEX*16 array, dimension (LDA,N) */ /* On entry, the Hermitian matrix A. If UPLO = 'U', the leading */ /* n-by-n upper triangular part of A contains the upper */ /* triangular part of the matrix A, and the strictly lower */ /* triangular part of A is not referenced. If UPLO = 'L', the */ /* leading n-by-n lower triangular part of A contains the lower */ /* triangular part of the matrix A, and the strictly upper */ /* triangular part of A is not referenced. */ /* On exit, if UPLO = 'U', the diagonal and first superdiagonal */ /* of A are overwritten by the corresponding elements of the */ /* tridiagonal matrix T, and the elements above the first */ /* superdiagonal, with the array TAU, represent the unitary */ /* matrix Q as a product of elementary reflectors; if UPLO */ /* = 'L', the diagonal and first subdiagonal of A are over- */ /* written by the corresponding elements of the tridiagonal */ /* matrix T, and the elements below the first subdiagonal, with */ /* the array TAU, represent the unitary matrix Q as a product */ /* of elementary reflectors. See Further Details. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* D (output) DOUBLE PRECISION array, dimension (N) */ /* The diagonal elements of the tridiagonal matrix T: */ /* D(i) = A(i,i). */ /* E (output) DOUBLE PRECISION array, dimension (N-1) */ /* The off-diagonal elements of the tridiagonal matrix T: */ /* E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. */ /* TAU (output) COMPLEX*16 array, dimension (N-1) */ /* The scalar factors of the elementary reflectors (see Further */ /* Details). */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* Further Details */ /* =============== */ /* If UPLO = 'U', the matrix Q is represented as a product of elementary */ /* reflectors */ /* Q = H(n-1) . . . H(2) H(1). */ /* Each H(i) has the form */ /* H(i) = I - tau * v * v' */ /* where tau is a complex scalar, and v is a complex vector with */ /* v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in */ /* A(1:i-1,i+1), and tau in TAU(i). */ /* If UPLO = 'L', the matrix Q is represented as a product of elementary */ /* reflectors */ /* Q = H(1) H(2) . . . H(n-1). */ /* Each H(i) has the form */ /* H(i) = I - tau * v * v' */ /* where tau is a complex scalar, and v is a complex vector with */ /* v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), */ /* and tau in TAU(i). */ /* The contents of A on exit are illustrated by the following examples */ /* with n = 5: */ /* if UPLO = 'U': if UPLO = 'L': */ /* ( d e v2 v3 v4 ) ( d ) */ /* ( d e v3 v4 ) ( e d ) */ /* ( d e v4 ) ( v1 e d ) */ /* ( d e ) ( v1 v2 e d ) */ /* ( d ) ( v1 v2 v3 e d ) */ /* where d and e denote diagonal and off-diagonal elements of T, and vi */ /* denotes an element of the vector defining H(i). */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --d__; --e; --tau; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*lda < max(1,*n)) { *info = -4; } if (*info != 0) { i__1 = -(*info); xerbla_("ZHETD2", &i__1); return 0; } /* Quick return if possible */ if (*n <= 0) { return 0; } if (upper) { /* Reduce the upper triangle of A */ i__1 = *n + *n * a_dim1; i__2 = *n + *n * a_dim1; d__1 = a[i__2].r; a[i__1].r = d__1, a[i__1].i = 0.; for (i__ = *n - 1; i__ >= 1; --i__) { /* Generate elementary reflector H(i) = I - tau * v * v' */ /* to annihilate A(1:i-1,i+1) */ i__1 = i__ + (i__ + 1) * a_dim1; alpha.r = a[i__1].r, alpha.i = a[i__1].i; zlarfg_(&i__, &alpha, &a[(i__ + 1) * a_dim1 + 1], &c__1, &taui); i__1 = i__; e[i__1] = alpha.r; if (taui.r != 0. || taui.i != 0.) { /* Apply H(i) from both sides to A(1:i,1:i) */ i__1 = i__ + (i__ + 1) * a_dim1; a[i__1].r = 1., a[i__1].i = 0.; /* Compute x := tau * A * v storing x in TAU(1:i) */ zhemv_(uplo, &i__, &taui, &a[a_offset], lda, &a[(i__ + 1) * a_dim1 + 1], &c__1, &c_b2, &tau[1], &c__1); /* Compute w := x - 1/2 * tau * (x'*v) * v */ z__3.r = -.5, z__3.i = -0.; z__2.r = z__3.r * taui.r - z__3.i * taui.i, z__2.i = z__3.r * taui.i + z__3.i * taui.r; zdotc_(&z__4, &i__, &tau[1], &c__1, &a[(i__ + 1) * a_dim1 + 1] , &c__1); z__1.r = z__2.r * z__4.r - z__2.i * z__4.i, z__1.i = z__2.r * z__4.i + z__2.i * z__4.r; alpha.r = z__1.r, alpha.i = z__1.i; zaxpy_(&i__, &alpha, &a[(i__ + 1) * a_dim1 + 1], &c__1, &tau[ 1], &c__1); /* Apply the transformation as a rank-2 update: */ /* A := A - v * w' - w * v' */ z__1.r = -1., z__1.i = -0.; zher2_(uplo, &i__, &z__1, &a[(i__ + 1) * a_dim1 + 1], &c__1, & tau[1], &c__1, &a[a_offset], lda); } else { i__1 = i__ + i__ * a_dim1; i__2 = i__ + i__ * a_dim1; d__1 = a[i__2].r; a[i__1].r = d__1, a[i__1].i = 0.; } i__1 = i__ + (i__ + 1) * a_dim1; i__2 = i__; a[i__1].r = e[i__2], a[i__1].i = 0.; i__1 = i__ + 1; i__2 = i__ + 1 + (i__ + 1) * a_dim1; d__[i__1] = a[i__2].r; i__1 = i__; tau[i__1].r = taui.r, tau[i__1].i = taui.i; /* L10: */ } i__1 = a_dim1 + 1; d__[1] = a[i__1].r; } else { /* Reduce the lower triangle of A */ i__1 = a_dim1 + 1; i__2 = a_dim1 + 1; d__1 = a[i__2].r; a[i__1].r = d__1, a[i__1].i = 0.; i__1 = *n - 1; for (i__ = 1; i__ <= i__1; ++i__) { /* Generate elementary reflector H(i) = I - tau * v * v' */ /* to annihilate A(i+2:n,i) */ i__2 = i__ + 1 + i__ * a_dim1; alpha.r = a[i__2].r, alpha.i = a[i__2].i; i__2 = *n - i__; /* Computing MIN */ i__3 = i__ + 2; zlarfg_(&i__2, &alpha, &a[min(i__3, *n)+ i__ * a_dim1], &c__1, & taui); i__2 = i__; e[i__2] = alpha.r; if (taui.r != 0. || taui.i != 0.) { /* Apply H(i) from both sides to A(i+1:n,i+1:n) */ i__2 = i__ + 1 + i__ * a_dim1; a[i__2].r = 1., a[i__2].i = 0.; /* Compute x := tau * A * v storing y in TAU(i:n-1) */ i__2 = *n - i__; zhemv_(uplo, &i__2, &taui, &a[i__ + 1 + (i__ + 1) * a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b2, &tau[ i__], &c__1); /* Compute w := x - 1/2 * tau * (x'*v) * v */ z__3.r = -.5, z__3.i = -0.; z__2.r = z__3.r * taui.r - z__3.i * taui.i, z__2.i = z__3.r * taui.i + z__3.i * taui.r; i__2 = *n - i__; zdotc_(&z__4, &i__2, &tau[i__], &c__1, &a[i__ + 1 + i__ * a_dim1], &c__1); z__1.r = z__2.r * z__4.r - z__2.i * z__4.i, z__1.i = z__2.r * z__4.i + z__2.i * z__4.r; alpha.r = z__1.r, alpha.i = z__1.i; i__2 = *n - i__; zaxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[ i__], &c__1); /* Apply the transformation as a rank-2 update: */ /* A := A - v * w' - w * v' */ i__2 = *n - i__; z__1.r = -1., z__1.i = -0.; zher2_(uplo, &i__2, &z__1, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[i__], &c__1, &a[i__ + 1 + (i__ + 1) * a_dim1], lda); } else { i__2 = i__ + 1 + (i__ + 1) * a_dim1; i__3 = i__ + 1 + (i__ + 1) * a_dim1; d__1 = a[i__3].r; a[i__2].r = d__1, a[i__2].i = 0.; } i__2 = i__ + 1 + i__ * a_dim1; i__3 = i__; a[i__2].r = e[i__3], a[i__2].i = 0.; i__2 = i__; i__3 = i__ + i__ * a_dim1; d__[i__2] = a[i__3].r; i__2 = i__; tau[i__2].r = taui.r, tau[i__2].i = taui.i; /* L20: */ } i__1 = *n; i__2 = *n + *n * a_dim1; d__[i__1] = a[i__2].r; } return 0; /* End of ZHETD2 */ } /* zhetd2_ */