#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static integer c_n1 = -1; static integer c__0 = 0; static doublereal c_b18 = 1.; /* Subroutine */ int zheevd_(char *jobz, char *uplo, integer *n, doublecomplex *a, integer *lda, doublereal *w, doublecomplex *work, integer *lwork, doublereal *rwork, integer *lrwork, integer *iwork, integer *liwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; doublereal d__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ doublereal eps; integer inde; doublereal anrm; integer imax; doublereal rmin, rmax; integer lopt; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *); doublereal sigma; extern logical lsame_(char *, char *); integer iinfo, lwmin, liopt; logical lower; integer llrwk, lropt; logical wantz; integer indwk2, llwrk2; extern doublereal dlamch_(char *); integer iscale; doublereal safmin; extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); extern /* Subroutine */ int xerbla_(char *, integer *); doublereal bignum; extern doublereal zlanhe_(char *, char *, integer *, doublecomplex *, integer *, doublereal *); integer indtau; extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *, integer *), zlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublecomplex *, integer *, integer *), zstedc_(char *, integer *, doublereal *, doublereal *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, integer *, integer *, integer *, integer *); integer indrwk, indwrk, liwmin; extern /* Subroutine */ int zhetrd_(char *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, doublecomplex *, integer *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); integer lrwmin, llwork; doublereal smlnum; logical lquery; extern /* Subroutine */ int zunmtr_(char *, char *, char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, integer *); /* -- LAPACK driver routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZHEEVD computes all eigenvalues and, optionally, eigenvectors of a */ /* complex Hermitian matrix A. If eigenvectors are desired, it uses a */ /* divide and conquer algorithm. */ /* The divide and conquer algorithm makes very mild assumptions about */ /* floating point arithmetic. It will work on machines with a guard */ /* digit in add/subtract, or on those binary machines without guard */ /* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */ /* Cray-2. It could conceivably fail on hexadecimal or decimal machines */ /* without guard digits, but we know of none. */ /* Arguments */ /* ========= */ /* JOBZ (input) CHARACTER*1 */ /* = 'N': Compute eigenvalues only; */ /* = 'V': Compute eigenvalues and eigenvectors. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored; */ /* = 'L': Lower triangle of A is stored. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* A (input/output) COMPLEX*16 array, dimension (LDA, N) */ /* On entry, the Hermitian matrix A. If UPLO = 'U', the */ /* leading N-by-N upper triangular part of A contains the */ /* upper triangular part of the matrix A. If UPLO = 'L', */ /* the leading N-by-N lower triangular part of A contains */ /* the lower triangular part of the matrix A. */ /* On exit, if JOBZ = 'V', then if INFO = 0, A contains the */ /* orthonormal eigenvectors of the matrix A. */ /* If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') */ /* or the upper triangle (if UPLO='U') of A, including the */ /* diagonal, is destroyed. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* W (output) DOUBLE PRECISION array, dimension (N) */ /* If INFO = 0, the eigenvalues in ascending order. */ /* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The length of the array WORK. */ /* If N <= 1, LWORK must be at least 1. */ /* If JOBZ = 'N' and N > 1, LWORK must be at least N + 1. */ /* If JOBZ = 'V' and N > 1, LWORK must be at least 2*N + N**2. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal sizes of the WORK, RWORK and */ /* IWORK arrays, returns these values as the first entries of */ /* the WORK, RWORK and IWORK arrays, and no error message */ /* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */ /* RWORK (workspace/output) DOUBLE PRECISION array, */ /* dimension (LRWORK) */ /* On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. */ /* LRWORK (input) INTEGER */ /* The dimension of the array RWORK. */ /* If N <= 1, LRWORK must be at least 1. */ /* If JOBZ = 'N' and N > 1, LRWORK must be at least N. */ /* If JOBZ = 'V' and N > 1, LRWORK must be at least */ /* 1 + 5*N + 2*N**2. */ /* If LRWORK = -1, then a workspace query is assumed; the */ /* routine only calculates the optimal sizes of the WORK, RWORK */ /* and IWORK arrays, returns these values as the first entries */ /* of the WORK, RWORK and IWORK arrays, and no error message */ /* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */ /* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */ /* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */ /* LIWORK (input) INTEGER */ /* The dimension of the array IWORK. */ /* If N <= 1, LIWORK must be at least 1. */ /* If JOBZ = 'N' and N > 1, LIWORK must be at least 1. */ /* If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. */ /* If LIWORK = -1, then a workspace query is assumed; the */ /* routine only calculates the optimal sizes of the WORK, RWORK */ /* and IWORK arrays, returns these values as the first entries */ /* of the WORK, RWORK and IWORK arrays, and no error message */ /* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i and JOBZ = 'N', then the algorithm failed */ /* to converge; i off-diagonal elements of an intermediate */ /* tridiagonal form did not converge to zero; */ /* if INFO = i and JOBZ = 'V', then the algorithm failed */ /* to compute an eigenvalue while working on the submatrix */ /* lying in rows and columns INFO/(N+1) through */ /* mod(INFO,N+1). */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Jeff Rutter, Computer Science Division, University of California */ /* at Berkeley, USA */ /* Modified description of INFO. Sven, 16 Feb 05. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --w; --work; --rwork; --iwork; /* Function Body */ wantz = lsame_(jobz, "V"); lower = lsame_(uplo, "L"); lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1; *info = 0; if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (! (lower || lsame_(uplo, "U"))) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } if (*info == 0) { if (*n <= 1) { lwmin = 1; lrwmin = 1; liwmin = 1; lopt = lwmin; lropt = lrwmin; liopt = liwmin; } else { if (wantz) { lwmin = (*n << 1) + *n * *n; /* Computing 2nd power */ i__1 = *n; lrwmin = *n * 5 + 1 + (i__1 * i__1 << 1); liwmin = *n * 5 + 3; } else { lwmin = *n + 1; lrwmin = *n; liwmin = 1; } /* Computing MAX */ i__1 = lwmin, i__2 = *n + ilaenv_(&c__1, "ZHETRD", uplo, n, &c_n1, &c_n1, &c_n1); lopt = max(i__1,i__2); lropt = lrwmin; liopt = liwmin; } work[1].r = (doublereal) lopt, work[1].i = 0.; rwork[1] = (doublereal) lropt; iwork[1] = liopt; if (*lwork < lwmin && ! lquery) { *info = -8; } else if (*lrwork < lrwmin && ! lquery) { *info = -10; } else if (*liwork < liwmin && ! lquery) { *info = -12; } } if (*info != 0) { i__1 = -(*info); xerbla_("ZHEEVD", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } if (*n == 1) { i__1 = a_dim1 + 1; w[1] = a[i__1].r; if (wantz) { i__1 = a_dim1 + 1; a[i__1].r = 1., a[i__1].i = 0.; } return 0; } /* Get machine constants. */ safmin = dlamch_("Safe minimum"); eps = dlamch_("Precision"); smlnum = safmin / eps; bignum = 1. / smlnum; rmin = sqrt(smlnum); rmax = sqrt(bignum); /* Scale matrix to allowable range, if necessary. */ anrm = zlanhe_("M", uplo, n, &a[a_offset], lda, &rwork[1]); iscale = 0; if (anrm > 0. && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { zlascl_(uplo, &c__0, &c__0, &c_b18, &sigma, n, n, &a[a_offset], lda, info); } /* Call ZHETRD to reduce Hermitian matrix to tridiagonal form. */ inde = 1; indtau = 1; indwrk = indtau + *n; indrwk = inde + *n; indwk2 = indwrk + *n * *n; llwork = *lwork - indwrk + 1; llwrk2 = *lwork - indwk2 + 1; llrwk = *lrwork - indrwk + 1; zhetrd_(uplo, n, &a[a_offset], lda, &w[1], &rwork[inde], &work[indtau], & work[indwrk], &llwork, &iinfo); /* For eigenvalues only, call DSTERF. For eigenvectors, first call */ /* ZSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the */ /* tridiagonal matrix, then call ZUNMTR to multiply it to the */ /* Householder transformations represented as Householder vectors in */ /* A. */ if (! wantz) { dsterf_(n, &w[1], &rwork[inde], info); } else { zstedc_("I", n, &w[1], &rwork[inde], &work[indwrk], n, &work[indwk2], &llwrk2, &rwork[indrwk], &llrwk, &iwork[1], liwork, info); zunmtr_("L", uplo, "N", n, n, &a[a_offset], lda, &work[indtau], &work[ indwrk], n, &work[indwk2], &llwrk2, &iinfo); zlacpy_("A", n, n, &work[indwrk], n, &a[a_offset], lda); } /* If matrix was scaled, then rescale eigenvalues appropriately. */ if (iscale == 1) { if (*info == 0) { imax = *n; } else { imax = *info - 1; } d__1 = 1. / sigma; dscal_(&imax, &d__1, &w[1], &c__1); } work[1].r = (doublereal) lopt, work[1].i = 0.; rwork[1] = (doublereal) lropt; iwork[1] = liopt; return 0; /* End of ZHEEVD */ } /* zheevd_ */