#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static doublecomplex c_b1 = {1.,0.}; static doublecomplex c_b2 = {0.,0.}; /* Subroutine */ int zhbgvd_(char *jobz, char *uplo, integer *n, integer *ka, integer *kb, doublecomplex *ab, integer *ldab, doublecomplex *bb, integer *ldbb, doublereal *w, doublecomplex *z__, integer *ldz, doublecomplex *work, integer *lwork, doublereal *rwork, integer * lrwork, integer *iwork, integer *liwork, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, bb_dim1, bb_offset, z_dim1, z_offset, i__1; /* Local variables */ integer inde; char vect[1]; integer llwk2; extern logical lsame_(char *, char *); integer iinfo; extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *); integer lwmin; logical upper; integer llrwk; logical wantz; integer indwk2; extern /* Subroutine */ int xerbla_(char *, integer *), dsterf_( integer *, doublereal *, doublereal *, integer *), zstedc_(char *, integer *, doublereal *, doublereal *, doublecomplex *, integer * , doublecomplex *, integer *, doublereal *, integer *, integer *, integer *, integer *), zhbtrd_(char *, char *, integer *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, integer *, doublecomplex *, integer *); integer indwrk, liwmin; extern /* Subroutine */ int zhbgst_(char *, char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, doublereal *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); integer lrwmin; extern /* Subroutine */ int zpbstf_(char *, integer *, integer *, doublecomplex *, integer *, integer *); logical lquery; /* -- LAPACK driver routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZHBGVD computes all the eigenvalues, and optionally, the eigenvectors */ /* of a complex generalized Hermitian-definite banded eigenproblem, of */ /* the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian */ /* and banded, and B is also positive definite. If eigenvectors are */ /* desired, it uses a divide and conquer algorithm. */ /* The divide and conquer algorithm makes very mild assumptions about */ /* floating point arithmetic. It will work on machines with a guard */ /* digit in add/subtract, or on those binary machines without guard */ /* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */ /* Cray-2. It could conceivably fail on hexadecimal or decimal machines */ /* without guard digits, but we know of none. */ /* Arguments */ /* ========= */ /* JOBZ (input) CHARACTER*1 */ /* = 'N': Compute eigenvalues only; */ /* = 'V': Compute eigenvalues and eigenvectors. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangles of A and B are stored; */ /* = 'L': Lower triangles of A and B are stored. */ /* N (input) INTEGER */ /* The order of the matrices A and B. N >= 0. */ /* KA (input) INTEGER */ /* The number of superdiagonals of the matrix A if UPLO = 'U', */ /* or the number of subdiagonals if UPLO = 'L'. KA >= 0. */ /* KB (input) INTEGER */ /* The number of superdiagonals of the matrix B if UPLO = 'U', */ /* or the number of subdiagonals if UPLO = 'L'. KB >= 0. */ /* AB (input/output) COMPLEX*16 array, dimension (LDAB, N) */ /* On entry, the upper or lower triangle of the Hermitian band */ /* matrix A, stored in the first ka+1 rows of the array. The */ /* j-th column of A is stored in the j-th column of the array AB */ /* as follows: */ /* if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; */ /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). */ /* On exit, the contents of AB are destroyed. */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= KA+1. */ /* BB (input/output) COMPLEX*16 array, dimension (LDBB, N) */ /* On entry, the upper or lower triangle of the Hermitian band */ /* matrix B, stored in the first kb+1 rows of the array. The */ /* j-th column of B is stored in the j-th column of the array BB */ /* as follows: */ /* if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; */ /* if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). */ /* On exit, the factor S from the split Cholesky factorization */ /* B = S**H*S, as returned by ZPBSTF. */ /* LDBB (input) INTEGER */ /* The leading dimension of the array BB. LDBB >= KB+1. */ /* W (output) DOUBLE PRECISION array, dimension (N) */ /* If INFO = 0, the eigenvalues in ascending order. */ /* Z (output) COMPLEX*16 array, dimension (LDZ, N) */ /* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */ /* eigenvectors, with the i-th column of Z holding the */ /* eigenvector associated with W(i). The eigenvectors are */ /* normalized so that Z**H*B*Z = I. */ /* If JOBZ = 'N', then Z is not referenced. */ /* LDZ (input) INTEGER */ /* The leading dimension of the array Z. LDZ >= 1, and if */ /* JOBZ = 'V', LDZ >= N. */ /* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO=0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. */ /* If N <= 1, LWORK >= 1. */ /* If JOBZ = 'N' and N > 1, LWORK >= N. */ /* If JOBZ = 'V' and N > 1, LWORK >= 2*N**2. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal sizes of the WORK, RWORK and */ /* IWORK arrays, returns these values as the first entries of */ /* the WORK, RWORK and IWORK arrays, and no error message */ /* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */ /* RWORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LRWORK)) */ /* On exit, if INFO=0, RWORK(1) returns the optimal LRWORK. */ /* LRWORK (input) INTEGER */ /* The dimension of array RWORK. */ /* If N <= 1, LRWORK >= 1. */ /* If JOBZ = 'N' and N > 1, LRWORK >= N. */ /* If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2. */ /* If LRWORK = -1, then a workspace query is assumed; the */ /* routine only calculates the optimal sizes of the WORK, RWORK */ /* and IWORK arrays, returns these values as the first entries */ /* of the WORK, RWORK and IWORK arrays, and no error message */ /* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */ /* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */ /* On exit, if INFO=0, IWORK(1) returns the optimal LIWORK. */ /* LIWORK (input) INTEGER */ /* The dimension of array IWORK. */ /* If JOBZ = 'N' or N <= 1, LIWORK >= 1. */ /* If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N. */ /* If LIWORK = -1, then a workspace query is assumed; the */ /* routine only calculates the optimal sizes of the WORK, RWORK */ /* and IWORK arrays, returns these values as the first entries */ /* of the WORK, RWORK and IWORK arrays, and no error message */ /* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, and i is: */ /* <= N: the algorithm failed to converge: */ /* i off-diagonal elements of an intermediate */ /* tridiagonal form did not converge to zero; */ /* > N: if INFO = N + i, for 1 <= i <= N, then ZPBSTF */ /* returned INFO = i: B is not positive definite. */ /* The factorization of B could not be completed and */ /* no eigenvalues or eigenvectors were computed. */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; bb_dim1 = *ldbb; bb_offset = 1 + bb_dim1; bb -= bb_offset; --w; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --work; --rwork; --iwork; /* Function Body */ wantz = lsame_(jobz, "V"); upper = lsame_(uplo, "U"); lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1; *info = 0; if (*n <= 1) { lwmin = 1; lrwmin = 1; liwmin = 1; } else if (wantz) { /* Computing 2nd power */ i__1 = *n; lwmin = i__1 * i__1 << 1; /* Computing 2nd power */ i__1 = *n; lrwmin = *n * 5 + 1 + (i__1 * i__1 << 1); liwmin = *n * 5 + 3; } else { lwmin = *n; lrwmin = *n; liwmin = 1; } if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (! (upper || lsame_(uplo, "L"))) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*ka < 0) { *info = -4; } else if (*kb < 0 || *kb > *ka) { *info = -5; } else if (*ldab < *ka + 1) { *info = -7; } else if (*ldbb < *kb + 1) { *info = -9; } else if (*ldz < 1 || wantz && *ldz < *n) { *info = -12; } if (*info == 0) { work[1].r = (doublereal) lwmin, work[1].i = 0.; rwork[1] = (doublereal) lrwmin; iwork[1] = liwmin; if (*lwork < lwmin && ! lquery) { *info = -14; } else if (*lrwork < lrwmin && ! lquery) { *info = -16; } else if (*liwork < liwmin && ! lquery) { *info = -18; } } if (*info != 0) { i__1 = -(*info); xerbla_("ZHBGVD", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Form a split Cholesky factorization of B. */ zpbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info); if (*info != 0) { *info = *n + *info; return 0; } /* Transform problem to standard eigenvalue problem. */ inde = 1; indwrk = inde + *n; indwk2 = *n * *n + 1; llwk2 = *lwork - indwk2 + 2; llrwk = *lrwork - indwrk + 2; zhbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb, &z__[z_offset], ldz, &work[1], &rwork[indwrk], &iinfo); /* Reduce Hermitian band matrix to tridiagonal form. */ if (wantz) { *(unsigned char *)vect = 'U'; } else { *(unsigned char *)vect = 'N'; } zhbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &w[1], &rwork[inde], & z__[z_offset], ldz, &work[1], &iinfo); /* For eigenvalues only, call DSTERF. For eigenvectors, call ZSTEDC. */ if (! wantz) { dsterf_(n, &w[1], &rwork[inde], info); } else { zstedc_("I", n, &w[1], &rwork[inde], &work[1], n, &work[indwk2], & llwk2, &rwork[indwrk], &llrwk, &iwork[1], liwork, info); zgemm_("N", "N", n, n, n, &c_b1, &z__[z_offset], ldz, &work[1], n, & c_b2, &work[indwk2], n); zlacpy_("A", n, n, &work[indwk2], n, &z__[z_offset], ldz); } work[1].r = (doublereal) lwmin, work[1].i = 0.; rwork[1] = (doublereal) lrwmin; iwork[1] = liwmin; return 0; /* End of ZHBGVD */ } /* zhbgvd_ */