#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static doublereal c_b11 = 1.; static integer c__1 = 1; /* Subroutine */ int zhbev_(char *jobz, char *uplo, integer *n, integer *kd, doublecomplex *ab, integer *ldab, doublereal *w, doublecomplex *z__, integer *ldz, doublecomplex *work, doublereal *rwork, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, z_dim1, z_offset, i__1; doublereal d__1; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ doublereal eps; integer inde; doublereal anrm; integer imax; doublereal rmin, rmax; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *); doublereal sigma; extern logical lsame_(char *, char *); integer iinfo; logical lower, wantz; extern doublereal dlamch_(char *); integer iscale; doublereal safmin; extern doublereal zlanhb_(char *, char *, integer *, integer *, doublecomplex *, integer *, doublereal *); extern /* Subroutine */ int xerbla_(char *, integer *); doublereal bignum; extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *, integer *), zlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublecomplex *, integer *, integer *), zhbtrd_(char *, char *, integer *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, integer *, doublecomplex *, integer *); integer indrwk; doublereal smlnum; extern /* Subroutine */ int zsteqr_(char *, integer *, doublereal *, doublereal *, doublecomplex *, integer *, doublereal *, integer *); /* -- LAPACK driver routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZHBEV computes all the eigenvalues and, optionally, eigenvectors of */ /* a complex Hermitian band matrix A. */ /* Arguments */ /* ========= */ /* JOBZ (input) CHARACTER*1 */ /* = 'N': Compute eigenvalues only; */ /* = 'V': Compute eigenvalues and eigenvectors. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored; */ /* = 'L': Lower triangle of A is stored. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* KD (input) INTEGER */ /* The number of superdiagonals of the matrix A if UPLO = 'U', */ /* or the number of subdiagonals if UPLO = 'L'. KD >= 0. */ /* AB (input/output) COMPLEX*16 array, dimension (LDAB, N) */ /* On entry, the upper or lower triangle of the Hermitian band */ /* matrix A, stored in the first KD+1 rows of the array. The */ /* j-th column of A is stored in the j-th column of the array AB */ /* as follows: */ /* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */ /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */ /* On exit, AB is overwritten by values generated during the */ /* reduction to tridiagonal form. If UPLO = 'U', the first */ /* superdiagonal and the diagonal of the tridiagonal matrix T */ /* are returned in rows KD and KD+1 of AB, and if UPLO = 'L', */ /* the diagonal and first subdiagonal of T are returned in the */ /* first two rows of AB. */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= KD + 1. */ /* W (output) DOUBLE PRECISION array, dimension (N) */ /* If INFO = 0, the eigenvalues in ascending order. */ /* Z (output) COMPLEX*16 array, dimension (LDZ, N) */ /* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */ /* eigenvectors of the matrix A, with the i-th column of Z */ /* holding the eigenvector associated with W(i). */ /* If JOBZ = 'N', then Z is not referenced. */ /* LDZ (input) INTEGER */ /* The leading dimension of the array Z. LDZ >= 1, and if */ /* JOBZ = 'V', LDZ >= max(1,N). */ /* WORK (workspace) COMPLEX*16 array, dimension (N) */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (max(1,3*N-2)) */ /* INFO (output) INTEGER */ /* = 0: successful exit. */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > 0: if INFO = i, the algorithm failed to converge; i */ /* off-diagonal elements of an intermediate tridiagonal */ /* form did not converge to zero. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; --w; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --work; --rwork; /* Function Body */ wantz = lsame_(jobz, "V"); lower = lsame_(uplo, "L"); *info = 0; if (! (wantz || lsame_(jobz, "N"))) { *info = -1; } else if (! (lower || lsame_(uplo, "U"))) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*kd < 0) { *info = -4; } else if (*ldab < *kd + 1) { *info = -6; } else if (*ldz < 1 || wantz && *ldz < *n) { *info = -9; } if (*info != 0) { i__1 = -(*info); xerbla_("ZHBEV ", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } if (*n == 1) { if (lower) { i__1 = ab_dim1 + 1; w[1] = ab[i__1].r; } else { i__1 = *kd + 1 + ab_dim1; w[1] = ab[i__1].r; } if (wantz) { i__1 = z_dim1 + 1; z__[i__1].r = 1., z__[i__1].i = 0.; } return 0; } /* Get machine constants. */ safmin = dlamch_("Safe minimum"); eps = dlamch_("Precision"); smlnum = safmin / eps; bignum = 1. / smlnum; rmin = sqrt(smlnum); rmax = sqrt(bignum); /* Scale matrix to allowable range, if necessary. */ anrm = zlanhb_("M", uplo, n, kd, &ab[ab_offset], ldab, &rwork[1]); iscale = 0; if (anrm > 0. && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { if (lower) { zlascl_("B", kd, kd, &c_b11, &sigma, n, n, &ab[ab_offset], ldab, info); } else { zlascl_("Q", kd, kd, &c_b11, &sigma, n, n, &ab[ab_offset], ldab, info); } } /* Call ZHBTRD to reduce Hermitian band matrix to tridiagonal form. */ inde = 1; zhbtrd_(jobz, uplo, n, kd, &ab[ab_offset], ldab, &w[1], &rwork[inde], & z__[z_offset], ldz, &work[1], &iinfo); /* For eigenvalues only, call DSTERF. For eigenvectors, call ZSTEQR. */ if (! wantz) { dsterf_(n, &w[1], &rwork[inde], info); } else { indrwk = inde + *n; zsteqr_(jobz, n, &w[1], &rwork[inde], &z__[z_offset], ldz, &rwork[ indrwk], info); } /* If matrix was scaled, then rescale eigenvalues appropriately. */ if (iscale == 1) { if (*info == 0) { imax = *n; } else { imax = *info - 1; } d__1 = 1. / sigma; dscal_(&imax, &d__1, &w[1], &c__1); } return 0; /* End of ZHBEV */ } /* zhbev_ */