#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static integer c__0 = 0; static integer c_n1 = -1; /* Subroutine */ int zgeevx_(char *balanc, char *jobvl, char *jobvr, char * sense, integer *n, doublecomplex *a, integer *lda, doublecomplex *w, doublecomplex *vl, integer *ldvl, doublecomplex *vr, integer *ldvr, integer *ilo, integer *ihi, doublereal *scale, doublereal *abnrm, doublereal *rconde, doublereal *rcondv, doublecomplex *work, integer * lwork, doublereal *rwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, i__2, i__3; doublereal d__1, d__2; doublecomplex z__1, z__2; /* Builtin functions */ double sqrt(doublereal), d_imag(doublecomplex *); void d_cnjg(doublecomplex *, doublecomplex *); /* Local variables */ integer i__, k; char job[1]; doublereal scl, dum[1], eps; doublecomplex tmp; char side[1]; doublereal anrm; integer ierr, itau, iwrk, nout, icond; extern logical lsame_(char *, char *); extern /* Subroutine */ int zscal_(integer *, doublecomplex *, doublecomplex *, integer *), dlabad_(doublereal *, doublereal *); extern doublereal dznrm2_(integer *, doublecomplex *, integer *); logical scalea; extern doublereal dlamch_(char *); doublereal cscale; extern /* Subroutine */ int dlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *), zgebak_(char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublecomplex *, integer *, integer *), zgebal_(char *, integer *, doublecomplex *, integer *, integer *, integer *, doublereal *, integer *); extern integer idamax_(integer *, doublereal *, integer *); extern /* Subroutine */ int xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); logical select[1]; extern /* Subroutine */ int zdscal_(integer *, doublereal *, doublecomplex *, integer *); doublereal bignum; extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *); extern /* Subroutine */ int zgehrd_(integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, integer *), zlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublecomplex *, integer *, integer *), zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); integer minwrk, maxwrk; logical wantvl, wntsnb; integer hswork; logical wntsne; doublereal smlnum; extern /* Subroutine */ int zhseqr_(char *, char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, integer *); logical lquery, wantvr; extern /* Subroutine */ int ztrevc_(char *, char *, logical *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, integer *, integer *, doublecomplex *, doublereal *, integer *), ztrsna_(char *, char *, logical *, integer *, doublecomplex *, integer *, doublecomplex * , integer *, doublecomplex *, integer *, doublereal *, doublereal *, integer *, integer *, doublecomplex *, integer *, doublereal *, integer *), zunghr_(integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, integer *); logical wntsnn, wntsnv; /* -- LAPACK driver routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZGEEVX computes for an N-by-N complex nonsymmetric matrix A, the */ /* eigenvalues and, optionally, the left and/or right eigenvectors. */ /* Optionally also, it computes a balancing transformation to improve */ /* the conditioning of the eigenvalues and eigenvectors (ILO, IHI, */ /* SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues */ /* (RCONDE), and reciprocal condition numbers for the right */ /* eigenvectors (RCONDV). */ /* The right eigenvector v(j) of A satisfies */ /* A * v(j) = lambda(j) * v(j) */ /* where lambda(j) is its eigenvalue. */ /* The left eigenvector u(j) of A satisfies */ /* u(j)**H * A = lambda(j) * u(j)**H */ /* where u(j)**H denotes the conjugate transpose of u(j). */ /* The computed eigenvectors are normalized to have Euclidean norm */ /* equal to 1 and largest component real. */ /* Balancing a matrix means permuting the rows and columns to make it */ /* more nearly upper triangular, and applying a diagonal similarity */ /* transformation D * A * D**(-1), where D is a diagonal matrix, to */ /* make its rows and columns closer in norm and the condition numbers */ /* of its eigenvalues and eigenvectors smaller. The computed */ /* reciprocal condition numbers correspond to the balanced matrix. */ /* Permuting rows and columns will not change the condition numbers */ /* (in exact arithmetic) but diagonal scaling will. For further */ /* explanation of balancing, see section 4.10.2 of the LAPACK */ /* Users' Guide. */ /* Arguments */ /* ========= */ /* BALANC (input) CHARACTER*1 */ /* Indicates how the input matrix should be diagonally scaled */ /* and/or permuted to improve the conditioning of its */ /* eigenvalues. */ /* = 'N': Do not diagonally scale or permute; */ /* = 'P': Perform permutations to make the matrix more nearly */ /* upper triangular. Do not diagonally scale; */ /* = 'S': Diagonally scale the matrix, ie. replace A by */ /* D*A*D**(-1), where D is a diagonal matrix chosen */ /* to make the rows and columns of A more equal in */ /* norm. Do not permute; */ /* = 'B': Both diagonally scale and permute A. */ /* Computed reciprocal condition numbers will be for the matrix */ /* after balancing and/or permuting. Permuting does not change */ /* condition numbers (in exact arithmetic), but balancing does. */ /* JOBVL (input) CHARACTER*1 */ /* = 'N': left eigenvectors of A are not computed; */ /* = 'V': left eigenvectors of A are computed. */ /* If SENSE = 'E' or 'B', JOBVL must = 'V'. */ /* JOBVR (input) CHARACTER*1 */ /* = 'N': right eigenvectors of A are not computed; */ /* = 'V': right eigenvectors of A are computed. */ /* If SENSE = 'E' or 'B', JOBVR must = 'V'. */ /* SENSE (input) CHARACTER*1 */ /* Determines which reciprocal condition numbers are computed. */ /* = 'N': None are computed; */ /* = 'E': Computed for eigenvalues only; */ /* = 'V': Computed for right eigenvectors only; */ /* = 'B': Computed for eigenvalues and right eigenvectors. */ /* If SENSE = 'E' or 'B', both left and right eigenvectors */ /* must also be computed (JOBVL = 'V' and JOBVR = 'V'). */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* A (input/output) COMPLEX*16 array, dimension (LDA,N) */ /* On entry, the N-by-N matrix A. */ /* On exit, A has been overwritten. If JOBVL = 'V' or */ /* JOBVR = 'V', A contains the Schur form of the balanced */ /* version of the matrix A. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* W (output) COMPLEX*16 array, dimension (N) */ /* W contains the computed eigenvalues. */ /* VL (output) COMPLEX*16 array, dimension (LDVL,N) */ /* If JOBVL = 'V', the left eigenvectors u(j) are stored one */ /* after another in the columns of VL, in the same order */ /* as their eigenvalues. */ /* If JOBVL = 'N', VL is not referenced. */ /* u(j) = VL(:,j), the j-th column of VL. */ /* LDVL (input) INTEGER */ /* The leading dimension of the array VL. LDVL >= 1; if */ /* JOBVL = 'V', LDVL >= N. */ /* VR (output) COMPLEX*16 array, dimension (LDVR,N) */ /* If JOBVR = 'V', the right eigenvectors v(j) are stored one */ /* after another in the columns of VR, in the same order */ /* as their eigenvalues. */ /* If JOBVR = 'N', VR is not referenced. */ /* v(j) = VR(:,j), the j-th column of VR. */ /* LDVR (input) INTEGER */ /* The leading dimension of the array VR. LDVR >= 1; if */ /* JOBVR = 'V', LDVR >= N. */ /* ILO (output) INTEGER */ /* IHI (output) INTEGER */ /* ILO and IHI are integer values determined when A was */ /* balanced. The balanced A(i,j) = 0 if I > J and */ /* J = 1,...,ILO-1 or I = IHI+1,...,N. */ /* SCALE (output) DOUBLE PRECISION array, dimension (N) */ /* Details of the permutations and scaling factors applied */ /* when balancing A. If P(j) is the index of the row and column */ /* interchanged with row and column j, and D(j) is the scaling */ /* factor applied to row and column j, then */ /* SCALE(J) = P(J), for J = 1,...,ILO-1 */ /* = D(J), for J = ILO,...,IHI */ /* = P(J) for J = IHI+1,...,N. */ /* The order in which the interchanges are made is N to IHI+1, */ /* then 1 to ILO-1. */ /* ABNRM (output) DOUBLE PRECISION */ /* The one-norm of the balanced matrix (the maximum */ /* of the sum of absolute values of elements of any column). */ /* RCONDE (output) DOUBLE PRECISION array, dimension (N) */ /* RCONDE(j) is the reciprocal condition number of the j-th */ /* eigenvalue. */ /* RCONDV (output) DOUBLE PRECISION array, dimension (N) */ /* RCONDV(j) is the reciprocal condition number of the j-th */ /* right eigenvector. */ /* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. If SENSE = 'N' or 'E', */ /* LWORK >= max(1,2*N), and if SENSE = 'V' or 'B', */ /* LWORK >= N*N+2*N. */ /* For good performance, LWORK must generally be larger. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (2*N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > 0: if INFO = i, the QR algorithm failed to compute all the */ /* eigenvalues, and no eigenvectors or condition numbers */ /* have been computed; elements 1:ILO-1 and i+1:N of W */ /* contain eigenvalues which have converged. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --w; vl_dim1 = *ldvl; vl_offset = 1 + vl_dim1; vl -= vl_offset; vr_dim1 = *ldvr; vr_offset = 1 + vr_dim1; vr -= vr_offset; --scale; --rconde; --rcondv; --work; --rwork; /* Function Body */ *info = 0; lquery = *lwork == -1; wantvl = lsame_(jobvl, "V"); wantvr = lsame_(jobvr, "V"); wntsnn = lsame_(sense, "N"); wntsne = lsame_(sense, "E"); wntsnv = lsame_(sense, "V"); wntsnb = lsame_(sense, "B"); if (! (lsame_(balanc, "N") || lsame_(balanc, "S") || lsame_(balanc, "P") || lsame_(balanc, "B"))) { *info = -1; } else if (! wantvl && ! lsame_(jobvl, "N")) { *info = -2; } else if (! wantvr && ! lsame_(jobvr, "N")) { *info = -3; } else if (! (wntsnn || wntsne || wntsnb || wntsnv) || (wntsne || wntsnb) && ! (wantvl && wantvr)) { *info = -4; } else if (*n < 0) { *info = -5; } else if (*lda < max(1,*n)) { *info = -7; } else if (*ldvl < 1 || wantvl && *ldvl < *n) { *info = -10; } else if (*ldvr < 1 || wantvr && *ldvr < *n) { *info = -12; } /* Compute workspace */ /* (Note: Comments in the code beginning "Workspace:" describe the */ /* minimal amount of workspace needed at that point in the code, */ /* as well as the preferred amount for good performance. */ /* CWorkspace refers to complex workspace, and RWorkspace to real */ /* workspace. NB refers to the optimal block size for the */ /* immediately following subroutine, as returned by ILAENV. */ /* HSWORK refers to the workspace preferred by ZHSEQR, as */ /* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */ /* the worst case.) */ if (*info == 0) { if (*n == 0) { minwrk = 1; maxwrk = 1; } else { maxwrk = *n + *n * ilaenv_(&c__1, "ZGEHRD", " ", n, &c__1, n, & c__0); if (wantvl) { zhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &w[1], &vl[ vl_offset], ldvl, &work[1], &c_n1, info); } else if (wantvr) { zhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &w[1], &vr[ vr_offset], ldvr, &work[1], &c_n1, info); } else { if (wntsnn) { zhseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &w[1], & vr[vr_offset], ldvr, &work[1], &c_n1, info); } else { zhseqr_("S", "N", n, &c__1, n, &a[a_offset], lda, &w[1], & vr[vr_offset], ldvr, &work[1], &c_n1, info); } } hswork = (integer) work[1].r; if (! wantvl && ! wantvr) { minwrk = *n << 1; if (! (wntsnn || wntsne)) { /* Computing MAX */ i__1 = minwrk, i__2 = *n * *n + (*n << 1); minwrk = max(i__1,i__2); } maxwrk = max(maxwrk,hswork); if (! (wntsnn || wntsne)) { /* Computing MAX */ i__1 = maxwrk, i__2 = *n * *n + (*n << 1); maxwrk = max(i__1,i__2); } } else { minwrk = *n << 1; if (! (wntsnn || wntsne)) { /* Computing MAX */ i__1 = minwrk, i__2 = *n * *n + (*n << 1); minwrk = max(i__1,i__2); } maxwrk = max(maxwrk,hswork); /* Computing MAX */ i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "ZUNGHR", " ", n, &c__1, n, &c_n1); maxwrk = max(i__1,i__2); if (! (wntsnn || wntsne)) { /* Computing MAX */ i__1 = maxwrk, i__2 = *n * *n + (*n << 1); maxwrk = max(i__1,i__2); } /* Computing MAX */ i__1 = maxwrk, i__2 = *n << 1; maxwrk = max(i__1,i__2); } maxwrk = max(maxwrk,minwrk); } work[1].r = (doublereal) maxwrk, work[1].i = 0.; if (*lwork < minwrk && ! lquery) { *info = -20; } } if (*info != 0) { i__1 = -(*info); xerbla_("ZGEEVX", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Get machine constants */ eps = dlamch_("P"); smlnum = dlamch_("S"); bignum = 1. / smlnum; dlabad_(&smlnum, &bignum); smlnum = sqrt(smlnum) / eps; bignum = 1. / smlnum; /* Scale A if max element outside range [SMLNUM,BIGNUM] */ icond = 0; anrm = zlange_("M", n, n, &a[a_offset], lda, dum); scalea = FALSE_; if (anrm > 0. && anrm < smlnum) { scalea = TRUE_; cscale = smlnum; } else if (anrm > bignum) { scalea = TRUE_; cscale = bignum; } if (scalea) { zlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, & ierr); } /* Balance the matrix and compute ABNRM */ zgebal_(balanc, n, &a[a_offset], lda, ilo, ihi, &scale[1], &ierr); *abnrm = zlange_("1", n, n, &a[a_offset], lda, dum); if (scalea) { dum[0] = *abnrm; dlascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &c__1, & ierr); *abnrm = dum[0]; } /* Reduce to upper Hessenberg form */ /* (CWorkspace: need 2*N, prefer N+N*NB) */ /* (RWorkspace: none) */ itau = 1; iwrk = itau + *n; i__1 = *lwork - iwrk + 1; zgehrd_(n, ilo, ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, & ierr); if (wantvl) { /* Want left eigenvectors */ /* Copy Householder vectors to VL */ *(unsigned char *)side = 'L'; zlacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl) ; /* Generate unitary matrix in VL */ /* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */ /* (RWorkspace: none) */ i__1 = *lwork - iwrk + 1; zunghr_(n, ilo, ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk], & i__1, &ierr); /* Perform QR iteration, accumulating Schur vectors in VL */ /* (CWorkspace: need 1, prefer HSWORK (see comments) ) */ /* (RWorkspace: none) */ iwrk = itau; i__1 = *lwork - iwrk + 1; zhseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &w[1], &vl[ vl_offset], ldvl, &work[iwrk], &i__1, info); if (wantvr) { /* Want left and right eigenvectors */ /* Copy Schur vectors to VR */ *(unsigned char *)side = 'B'; zlacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr); } } else if (wantvr) { /* Want right eigenvectors */ /* Copy Householder vectors to VR */ *(unsigned char *)side = 'R'; zlacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr) ; /* Generate unitary matrix in VR */ /* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */ /* (RWorkspace: none) */ i__1 = *lwork - iwrk + 1; zunghr_(n, ilo, ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk], & i__1, &ierr); /* Perform QR iteration, accumulating Schur vectors in VR */ /* (CWorkspace: need 1, prefer HSWORK (see comments) ) */ /* (RWorkspace: none) */ iwrk = itau; i__1 = *lwork - iwrk + 1; zhseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &w[1], &vr[ vr_offset], ldvr, &work[iwrk], &i__1, info); } else { /* Compute eigenvalues only */ /* If condition numbers desired, compute Schur form */ if (wntsnn) { *(unsigned char *)job = 'E'; } else { *(unsigned char *)job = 'S'; } /* (CWorkspace: need 1, prefer HSWORK (see comments) ) */ /* (RWorkspace: none) */ iwrk = itau; i__1 = *lwork - iwrk + 1; zhseqr_(job, "N", n, ilo, ihi, &a[a_offset], lda, &w[1], &vr[ vr_offset], ldvr, &work[iwrk], &i__1, info); } /* If INFO > 0 from ZHSEQR, then quit */ if (*info > 0) { goto L50; } if (wantvl || wantvr) { /* Compute left and/or right eigenvectors */ /* (CWorkspace: need 2*N) */ /* (RWorkspace: need N) */ ztrevc_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &rwork[1], & ierr); } /* Compute condition numbers if desired */ /* (CWorkspace: need N*N+2*N unless SENSE = 'E') */ /* (RWorkspace: need 2*N unless SENSE = 'E') */ if (! wntsnn) { ztrsna_(sense, "A", select, n, &a[a_offset], lda, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &rconde[1], &rcondv[1], n, &nout, &work[iwrk], n, &rwork[1], &icond); } if (wantvl) { /* Undo balancing of left eigenvectors */ zgebak_(balanc, "L", n, ilo, ihi, &scale[1], n, &vl[vl_offset], ldvl, &ierr); /* Normalize left eigenvectors and make largest component real */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { scl = 1. / dznrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1); zdscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1); i__2 = *n; for (k = 1; k <= i__2; ++k) { i__3 = k + i__ * vl_dim1; /* Computing 2nd power */ d__1 = vl[i__3].r; /* Computing 2nd power */ d__2 = d_imag(&vl[k + i__ * vl_dim1]); rwork[k] = d__1 * d__1 + d__2 * d__2; /* L10: */ } k = idamax_(n, &rwork[1], &c__1); d_cnjg(&z__2, &vl[k + i__ * vl_dim1]); d__1 = sqrt(rwork[k]); z__1.r = z__2.r / d__1, z__1.i = z__2.i / d__1; tmp.r = z__1.r, tmp.i = z__1.i; zscal_(n, &tmp, &vl[i__ * vl_dim1 + 1], &c__1); i__2 = k + i__ * vl_dim1; i__3 = k + i__ * vl_dim1; d__1 = vl[i__3].r; z__1.r = d__1, z__1.i = 0.; vl[i__2].r = z__1.r, vl[i__2].i = z__1.i; /* L20: */ } } if (wantvr) { /* Undo balancing of right eigenvectors */ zgebak_(balanc, "R", n, ilo, ihi, &scale[1], n, &vr[vr_offset], ldvr, &ierr); /* Normalize right eigenvectors and make largest component real */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { scl = 1. / dznrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1); zdscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1); i__2 = *n; for (k = 1; k <= i__2; ++k) { i__3 = k + i__ * vr_dim1; /* Computing 2nd power */ d__1 = vr[i__3].r; /* Computing 2nd power */ d__2 = d_imag(&vr[k + i__ * vr_dim1]); rwork[k] = d__1 * d__1 + d__2 * d__2; /* L30: */ } k = idamax_(n, &rwork[1], &c__1); d_cnjg(&z__2, &vr[k + i__ * vr_dim1]); d__1 = sqrt(rwork[k]); z__1.r = z__2.r / d__1, z__1.i = z__2.i / d__1; tmp.r = z__1.r, tmp.i = z__1.i; zscal_(n, &tmp, &vr[i__ * vr_dim1 + 1], &c__1); i__2 = k + i__ * vr_dim1; i__3 = k + i__ * vr_dim1; d__1 = vr[i__3].r; z__1.r = d__1, z__1.i = 0.; vr[i__2].r = z__1.r, vr[i__2].i = z__1.i; /* L40: */ } } /* Undo scaling if necessary */ L50: if (scalea) { i__1 = *n - *info; /* Computing MAX */ i__3 = *n - *info; i__2 = max(i__3,1); zlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[*info + 1] , &i__2, &ierr); if (*info == 0) { if ((wntsnv || wntsnb) && icond == 0) { dlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &rcondv[ 1], n, &ierr); } } else { i__1 = *ilo - 1; zlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[1], n, &ierr); } } work[1].r = (doublereal) maxwrk, work[1].i = 0.; return 0; /* End of ZGEEVX */ } /* zgeevx_ */