#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; static integer c__0 = 0; static integer c_n1 = -1; /* Subroutine */ int zgeesx_(char *jobvs, char *sort, L_fp select, char * sense, integer *n, doublecomplex *a, integer *lda, integer *sdim, doublecomplex *w, doublecomplex *vs, integer *ldvs, doublereal * rconde, doublereal *rcondv, doublecomplex *work, integer *lwork, doublereal *rwork, logical *bwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, vs_dim1, vs_offset, i__1, i__2; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__, ihi, ilo; doublereal dum[1], eps; integer ibal; doublereal anrm; integer ierr, itau, iwrk, lwrk, icond, ieval; extern logical lsame_(char *, char *); extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, integer *), dlabad_(doublereal *, doublereal *); logical scalea; extern doublereal dlamch_(char *); doublereal cscale; extern /* Subroutine */ int dlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, integer *), zgebak_(char *, char *, integer *, integer *, integer *, doublereal *, integer *, doublecomplex *, integer *, integer *), zgebal_(char *, integer *, doublecomplex *, integer *, integer *, integer *, doublereal *, integer *), xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, integer *, doublereal *); doublereal bignum; extern /* Subroutine */ int zgehrd_(integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, integer *), zlascl_(char *, integer *, integer *, doublereal *, doublereal *, integer *, integer *, doublecomplex *, integer *, integer *); logical wantsb, wantse; extern /* Subroutine */ int zlacpy_(char *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, integer *); integer minwrk, maxwrk; logical wantsn; doublereal smlnum; extern /* Subroutine */ int zhseqr_(char *, char *, integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *, integer *); integer hswork; extern /* Subroutine */ int zunghr_(integer *, integer *, integer *, doublecomplex *, integer *, doublecomplex *, doublecomplex *, integer *, integer *); logical wantst, wantsv, wantvs; extern /* Subroutine */ int ztrsen_(char *, char *, logical *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublecomplex *, integer *, doublereal *, doublereal *, doublecomplex *, integer *, integer *); /* -- LAPACK driver routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* .. Function Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* ZGEESX computes for an N-by-N complex nonsymmetric matrix A, the */ /* eigenvalues, the Schur form T, and, optionally, the matrix of Schur */ /* vectors Z. This gives the Schur factorization A = Z*T*(Z**H). */ /* Optionally, it also orders the eigenvalues on the diagonal of the */ /* Schur form so that selected eigenvalues are at the top left; */ /* computes a reciprocal condition number for the average of the */ /* selected eigenvalues (RCONDE); and computes a reciprocal condition */ /* number for the right invariant subspace corresponding to the */ /* selected eigenvalues (RCONDV). The leading columns of Z form an */ /* orthonormal basis for this invariant subspace. */ /* For further explanation of the reciprocal condition numbers RCONDE */ /* and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where */ /* these quantities are called s and sep respectively). */ /* A complex matrix is in Schur form if it is upper triangular. */ /* Arguments */ /* ========= */ /* JOBVS (input) CHARACTER*1 */ /* = 'N': Schur vectors are not computed; */ /* = 'V': Schur vectors are computed. */ /* SORT (input) CHARACTER*1 */ /* Specifies whether or not to order the eigenvalues on the */ /* diagonal of the Schur form. */ /* = 'N': Eigenvalues are not ordered; */ /* = 'S': Eigenvalues are ordered (see SELECT). */ /* SELECT (external procedure) LOGICAL FUNCTION of one COMPLEX*16 argument */ /* SELECT must be declared EXTERNAL in the calling subroutine. */ /* If SORT = 'S', SELECT is used to select eigenvalues to order */ /* to the top left of the Schur form. */ /* If SORT = 'N', SELECT is not referenced. */ /* An eigenvalue W(j) is selected if SELECT(W(j)) is true. */ /* SENSE (input) CHARACTER*1 */ /* Determines which reciprocal condition numbers are computed. */ /* = 'N': None are computed; */ /* = 'E': Computed for average of selected eigenvalues only; */ /* = 'V': Computed for selected right invariant subspace only; */ /* = 'B': Computed for both. */ /* If SENSE = 'E', 'V' or 'B', SORT must equal 'S'. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* A (input/output) COMPLEX*16 array, dimension (LDA, N) */ /* On entry, the N-by-N matrix A. */ /* On exit, A is overwritten by its Schur form T. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* SDIM (output) INTEGER */ /* If SORT = 'N', SDIM = 0. */ /* If SORT = 'S', SDIM = number of eigenvalues for which */ /* SELECT is true. */ /* W (output) COMPLEX*16 array, dimension (N) */ /* W contains the computed eigenvalues, in the same order */ /* that they appear on the diagonal of the output Schur form T. */ /* VS (output) COMPLEX*16 array, dimension (LDVS,N) */ /* If JOBVS = 'V', VS contains the unitary matrix Z of Schur */ /* vectors. */ /* If JOBVS = 'N', VS is not referenced. */ /* LDVS (input) INTEGER */ /* The leading dimension of the array VS. LDVS >= 1, and if */ /* JOBVS = 'V', LDVS >= N. */ /* RCONDE (output) DOUBLE PRECISION */ /* If SENSE = 'E' or 'B', RCONDE contains the reciprocal */ /* condition number for the average of the selected eigenvalues. */ /* Not referenced if SENSE = 'N' or 'V'. */ /* RCONDV (output) DOUBLE PRECISION */ /* If SENSE = 'V' or 'B', RCONDV contains the reciprocal */ /* condition number for the selected right invariant subspace. */ /* Not referenced if SENSE = 'N' or 'E'. */ /* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The dimension of the array WORK. LWORK >= max(1,2*N). */ /* Also, if SENSE = 'E' or 'V' or 'B', LWORK >= 2*SDIM*(N-SDIM), */ /* where SDIM is the number of selected eigenvalues computed by */ /* this routine. Note that 2*SDIM*(N-SDIM) <= N*N/2. Note also */ /* that an error is only returned if LWORK < max(1,2*N), but if */ /* SENSE = 'E' or 'V' or 'B' this may not be large enough. */ /* For good performance, LWORK must generally be larger. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates upper bound on the optimal size of the */ /* array WORK, returns this value as the first entry of the WORK */ /* array, and no error message related to LWORK is issued by */ /* XERBLA. */ /* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */ /* BWORK (workspace) LOGICAL array, dimension (N) */ /* Not referenced if SORT = 'N'. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > 0: if INFO = i, and i is */ /* <= N: the QR algorithm failed to compute all the */ /* eigenvalues; elements 1:ILO-1 and i+1:N of W */ /* contain those eigenvalues which have converged; if */ /* JOBVS = 'V', VS contains the transformation which */ /* reduces A to its partially converged Schur form. */ /* = N+1: the eigenvalues could not be reordered because some */ /* eigenvalues were too close to separate (the problem */ /* is very ill-conditioned); */ /* = N+2: after reordering, roundoff changed values of some */ /* complex eigenvalues so that leading eigenvalues in */ /* the Schur form no longer satisfy SELECT=.TRUE. This */ /* could also be caused by underflow due to scaling. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --w; vs_dim1 = *ldvs; vs_offset = 1 + vs_dim1; vs -= vs_offset; --work; --rwork; --bwork; /* Function Body */ *info = 0; wantvs = lsame_(jobvs, "V"); wantst = lsame_(sort, "S"); wantsn = lsame_(sense, "N"); wantse = lsame_(sense, "E"); wantsv = lsame_(sense, "V"); wantsb = lsame_(sense, "B"); if (! wantvs && ! lsame_(jobvs, "N")) { *info = -1; } else if (! wantst && ! lsame_(sort, "N")) { *info = -2; } else if (! (wantsn || wantse || wantsv || wantsb) || ! wantst && ! wantsn) { *info = -4; } else if (*n < 0) { *info = -5; } else if (*lda < max(1,*n)) { *info = -7; } else if (*ldvs < 1 || wantvs && *ldvs < *n) { *info = -11; } /* Compute workspace */ /* (Note: Comments in the code beginning "Workspace:" describe the */ /* minimal amount of real workspace needed at that point in the */ /* code, as well as the preferred amount for good performance. */ /* CWorkspace refers to complex workspace, and RWorkspace to real */ /* workspace. NB refers to the optimal block size for the */ /* immediately following subroutine, as returned by ILAENV. */ /* HSWORK refers to the workspace preferred by ZHSEQR, as */ /* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */ /* the worst case. */ /* If SENSE = 'E', 'V' or 'B', then the amount of workspace needed */ /* depends on SDIM, which is computed by the routine ZTRSEN later */ /* in the code.) */ if (*info == 0) { if (*n == 0) { minwrk = 1; lwrk = 1; } else { maxwrk = *n + *n * ilaenv_(&c__1, "ZGEHRD", " ", n, &c__1, n, & c__0); minwrk = *n << 1; zhseqr_("S", jobvs, n, &c__1, n, &a[a_offset], lda, &w[1], &vs[ vs_offset], ldvs, &work[1], &c_n1, &ieval); hswork = (integer) work[1].r; if (! wantvs) { maxwrk = max(maxwrk,hswork); } else { /* Computing MAX */ i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "ZUNGHR", " ", n, &c__1, n, &c_n1); maxwrk = max(i__1,i__2); maxwrk = max(maxwrk,hswork); } lwrk = maxwrk; if (! wantsn) { /* Computing MAX */ i__1 = lwrk, i__2 = *n * *n / 2; lwrk = max(i__1,i__2); } } work[1].r = (doublereal) lwrk, work[1].i = 0.; if (*lwork < minwrk) { *info = -15; } } if (*info != 0) { i__1 = -(*info); xerbla_("ZGEESX", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { *sdim = 0; return 0; } /* Get machine constants */ eps = dlamch_("P"); smlnum = dlamch_("S"); bignum = 1. / smlnum; dlabad_(&smlnum, &bignum); smlnum = sqrt(smlnum) / eps; bignum = 1. / smlnum; /* Scale A if max element outside range [SMLNUM,BIGNUM] */ anrm = zlange_("M", n, n, &a[a_offset], lda, dum); scalea = FALSE_; if (anrm > 0. && anrm < smlnum) { scalea = TRUE_; cscale = smlnum; } else if (anrm > bignum) { scalea = TRUE_; cscale = bignum; } if (scalea) { zlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, & ierr); } /* Permute the matrix to make it more nearly triangular */ /* (CWorkspace: none) */ /* (RWorkspace: need N) */ ibal = 1; zgebal_("P", n, &a[a_offset], lda, &ilo, &ihi, &rwork[ibal], &ierr); /* Reduce to upper Hessenberg form */ /* (CWorkspace: need 2*N, prefer N+N*NB) */ /* (RWorkspace: none) */ itau = 1; iwrk = *n + itau; i__1 = *lwork - iwrk + 1; zgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, &ierr); if (wantvs) { /* Copy Householder vectors to VS */ zlacpy_("L", n, n, &a[a_offset], lda, &vs[vs_offset], ldvs) ; /* Generate unitary matrix in VS */ /* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */ /* (RWorkspace: none) */ i__1 = *lwork - iwrk + 1; zunghr_(n, &ilo, &ihi, &vs[vs_offset], ldvs, &work[itau], &work[iwrk], &i__1, &ierr); } *sdim = 0; /* Perform QR iteration, accumulating Schur vectors in VS if desired */ /* (CWorkspace: need 1, prefer HSWORK (see comments) ) */ /* (RWorkspace: none) */ iwrk = itau; i__1 = *lwork - iwrk + 1; zhseqr_("S", jobvs, n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vs[ vs_offset], ldvs, &work[iwrk], &i__1, &ieval); if (ieval > 0) { *info = ieval; } /* Sort eigenvalues if desired */ if (wantst && *info == 0) { if (scalea) { zlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &w[1], n, & ierr); } i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { bwork[i__] = (*select)(&w[i__]); /* L10: */ } /* Reorder eigenvalues, transform Schur vectors, and compute */ /* reciprocal condition numbers */ /* (CWorkspace: if SENSE is not 'N', need 2*SDIM*(N-SDIM) */ /* otherwise, need none ) */ /* (RWorkspace: none) */ i__1 = *lwork - iwrk + 1; ztrsen_(sense, jobvs, &bwork[1], n, &a[a_offset], lda, &vs[vs_offset], ldvs, &w[1], sdim, rconde, rcondv, &work[iwrk], &i__1, & icond); if (! wantsn) { /* Computing MAX */ i__1 = maxwrk, i__2 = (*sdim << 1) * (*n - *sdim); maxwrk = max(i__1,i__2); } if (icond == -14) { /* Not enough complex workspace */ *info = -15; } } if (wantvs) { /* Undo balancing */ /* (CWorkspace: none) */ /* (RWorkspace: need N) */ zgebak_("P", "R", n, &ilo, &ihi, &rwork[ibal], n, &vs[vs_offset], ldvs, &ierr); } if (scalea) { /* Undo scaling for the Schur form of A */ zlascl_("U", &c__0, &c__0, &cscale, &anrm, n, n, &a[a_offset], lda, & ierr); i__1 = *lda + 1; zcopy_(n, &a[a_offset], &i__1, &w[1], &c__1); if ((wantsv || wantsb) && *info == 0) { dum[0] = *rcondv; dlascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, & c__1, &ierr); *rcondv = dum[0]; } } work[1].r = (doublereal) maxwrk, work[1].i = 0.; return 0; /* End of ZGEESX */ } /* zgeesx_ */