#include "f2c.h" #include "blaswrap.h" /* Subroutine */ int spbsv_(char *uplo, integer *n, integer *kd, integer * nrhs, real *ab, integer *ldab, real *b, integer *ldb, integer *info) { /* System generated locals */ integer ab_dim1, ab_offset, b_dim1, b_offset, i__1; /* Local variables */ extern logical lsame_(char *, char *); extern /* Subroutine */ int xerbla_(char *, integer *), spbtrf_( char *, integer *, integer *, real *, integer *, integer *), spbtrs_(char *, integer *, integer *, integer *, real *, integer *, real *, integer *, integer *); /* -- LAPACK driver routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SPBSV computes the solution to a real system of linear equations */ /* A * X = B, */ /* where A is an N-by-N symmetric positive definite band matrix and X */ /* and B are N-by-NRHS matrices. */ /* The Cholesky decomposition is used to factor A as */ /* A = U**T * U, if UPLO = 'U', or */ /* A = L * L**T, if UPLO = 'L', */ /* where U is an upper triangular band matrix, and L is a lower */ /* triangular band matrix, with the same number of superdiagonals or */ /* subdiagonals as A. The factored form of A is then used to solve the */ /* system of equations A * X = B. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A is stored; */ /* = 'L': Lower triangle of A is stored. */ /* N (input) INTEGER */ /* The number of linear equations, i.e., the order of the */ /* matrix A. N >= 0. */ /* KD (input) INTEGER */ /* The number of superdiagonals of the matrix A if UPLO = 'U', */ /* or the number of subdiagonals if UPLO = 'L'. KD >= 0. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of columns */ /* of the matrix B. NRHS >= 0. */ /* AB (input/output) REAL array, dimension (LDAB,N) */ /* On entry, the upper or lower triangle of the symmetric band */ /* matrix A, stored in the first KD+1 rows of the array. The */ /* j-th column of A is stored in the j-th column of the array AB */ /* as follows: */ /* if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j; */ /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(N,j+KD). */ /* See below for further details. */ /* On exit, if INFO = 0, the triangular factor U or L from the */ /* Cholesky factorization A = U**T*U or A = L*L**T of the band */ /* matrix A, in the same storage format as A. */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= KD+1. */ /* B (input/output) REAL array, dimension (LDB,NRHS) */ /* On entry, the N-by-NRHS right hand side matrix B. */ /* On exit, if INFO = 0, the N-by-NRHS solution matrix X. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, the leading minor of order i of A is not */ /* positive definite, so the factorization could not be */ /* completed, and the solution has not been computed. */ /* Further Details */ /* =============== */ /* The band storage scheme is illustrated by the following example, when */ /* N = 6, KD = 2, and UPLO = 'U': */ /* On entry: On exit: */ /* * * a13 a24 a35 a46 * * u13 u24 u35 u46 */ /* * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 */ /* a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 */ /* Similarly, if UPLO = 'L' the format of A is as follows: */ /* On entry: On exit: */ /* a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66 */ /* a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 * */ /* a31 a42 a53 a64 * * l31 l42 l53 l64 * * */ /* Array elements marked * are not used by the routine. */ /* ===================================================================== */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; /* Function Body */ *info = 0; if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*kd < 0) { *info = -3; } else if (*nrhs < 0) { *info = -4; } else if (*ldab < *kd + 1) { *info = -6; } else if (*ldb < max(1,*n)) { *info = -8; } if (*info != 0) { i__1 = -(*info); xerbla_("SPBSV ", &i__1); return 0; } /* Compute the Cholesky factorization A = U'*U or A = L*L'. */ spbtrf_(uplo, n, kd, &ab[ab_offset], ldab, info); if (*info == 0) { /* Solve the system A*X = B, overwriting B with X. */ spbtrs_(uplo, n, kd, nrhs, &ab[ab_offset], ldab, &b[b_offset], ldb, info); } return 0; /* End of SPBSV */ } /* spbsv_ */