#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; doublereal slansb_(char *norm, char *uplo, integer *n, integer *k, real *ab, integer *ldab, real *work) { /* System generated locals */ integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4; real ret_val, r__1, r__2, r__3; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__, j, l; real sum, absa, scale; extern logical lsame_(char *, char *); real value; extern /* Subroutine */ int slassq_(integer *, real *, integer *, real *, real *); /* -- LAPACK auxiliary routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SLANSB returns the value of the one norm, or the Frobenius norm, or */ /* the infinity norm, or the element of largest absolute value of an */ /* n by n symmetric band matrix A, with k super-diagonals. */ /* Description */ /* =========== */ /* SLANSB returns the value */ /* SLANSB = ( max(abs(A(i,j))), NORM = 'M' or 'm' */ /* ( */ /* ( norm1(A), NORM = '1', 'O' or 'o' */ /* ( */ /* ( normI(A), NORM = 'I' or 'i' */ /* ( */ /* ( normF(A), NORM = 'F', 'f', 'E' or 'e' */ /* where norm1 denotes the one norm of a matrix (maximum column sum), */ /* normI denotes the infinity norm of a matrix (maximum row sum) and */ /* normF denotes the Frobenius norm of a matrix (square root of sum of */ /* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. */ /* Arguments */ /* ========= */ /* NORM (input) CHARACTER*1 */ /* Specifies the value to be returned in SLANSB as described */ /* above. */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the upper or lower triangular part of the */ /* band matrix A is supplied. */ /* = 'U': Upper triangular part is supplied */ /* = 'L': Lower triangular part is supplied */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. When N = 0, SLANSB is */ /* set to zero. */ /* K (input) INTEGER */ /* The number of super-diagonals or sub-diagonals of the */ /* band matrix A. K >= 0. */ /* AB (input) REAL array, dimension (LDAB,N) */ /* The upper or lower triangle of the symmetric band matrix A, */ /* stored in the first K+1 rows of AB. The j-th column of A is */ /* stored in the j-th column of the array AB as follows: */ /* if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j; */ /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k). */ /* LDAB (input) INTEGER */ /* The leading dimension of the array AB. LDAB >= K+1. */ /* WORK (workspace) REAL array, dimension (MAX(1,LWORK)), */ /* where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, */ /* WORK is not referenced. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; --work; /* Function Body */ if (*n == 0) { value = 0.f; } else if (lsame_(norm, "M")) { /* Find max(abs(A(i,j))). */ value = 0.f; if (lsame_(uplo, "U")) { i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ i__2 = *k + 2 - j; i__3 = *k + 1; for (i__ = max(i__2,1); i__ <= i__3; ++i__) { /* Computing MAX */ r__2 = value, r__3 = (r__1 = ab[i__ + j * ab_dim1], dabs( r__1)); value = dmax(r__2,r__3); /* L10: */ } /* L20: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { /* Computing MIN */ i__2 = *n + 1 - j, i__4 = *k + 1; i__3 = min(i__2,i__4); for (i__ = 1; i__ <= i__3; ++i__) { /* Computing MAX */ r__2 = value, r__3 = (r__1 = ab[i__ + j * ab_dim1], dabs( r__1)); value = dmax(r__2,r__3); /* L30: */ } /* L40: */ } } } else if (lsame_(norm, "I") || lsame_(norm, "O") || *(unsigned char *)norm == '1') { /* Find normI(A) ( = norm1(A), since A is symmetric). */ value = 0.f; if (lsame_(uplo, "U")) { i__1 = *n; for (j = 1; j <= i__1; ++j) { sum = 0.f; l = *k + 1 - j; /* Computing MAX */ i__3 = 1, i__2 = j - *k; i__4 = j - 1; for (i__ = max(i__3,i__2); i__ <= i__4; ++i__) { absa = (r__1 = ab[l + i__ + j * ab_dim1], dabs(r__1)); sum += absa; work[i__] += absa; /* L50: */ } work[j] = sum + (r__1 = ab[*k + 1 + j * ab_dim1], dabs(r__1)); /* L60: */ } i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { /* Computing MAX */ r__1 = value, r__2 = work[i__]; value = dmax(r__1,r__2); /* L70: */ } } else { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] = 0.f; /* L80: */ } i__1 = *n; for (j = 1; j <= i__1; ++j) { sum = work[j] + (r__1 = ab[j * ab_dim1 + 1], dabs(r__1)); l = 1 - j; /* Computing MIN */ i__3 = *n, i__2 = j + *k; i__4 = min(i__3,i__2); for (i__ = j + 1; i__ <= i__4; ++i__) { absa = (r__1 = ab[l + i__ + j * ab_dim1], dabs(r__1)); sum += absa; work[i__] += absa; /* L90: */ } value = dmax(value,sum); /* L100: */ } } } else if (lsame_(norm, "F") || lsame_(norm, "E")) { /* Find normF(A). */ scale = 0.f; sum = 1.f; if (*k > 0) { if (lsame_(uplo, "U")) { i__1 = *n; for (j = 2; j <= i__1; ++j) { /* Computing MIN */ i__3 = j - 1; i__4 = min(i__3,*k); /* Computing MAX */ i__2 = *k + 2 - j; slassq_(&i__4, &ab[max(i__2, 1)+ j * ab_dim1], &c__1, & scale, &sum); /* L110: */ } l = *k + 1; } else { i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { /* Computing MIN */ i__3 = *n - j; i__4 = min(i__3,*k); slassq_(&i__4, &ab[j * ab_dim1 + 2], &c__1, &scale, &sum); /* L120: */ } l = 1; } sum *= 2; } else { l = 1; } slassq_(n, &ab[l + ab_dim1], ldab, &scale, &sum); value = scale * sqrt(sum); } ret_val = value; return ret_val; /* End of SLANSB */ } /* slansb_ */