#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__2 = 2; static integer c__1 = 1; /* Subroutine */ int slagv2_(real *a, integer *lda, real *b, integer *ldb, real *alphar, real *alphai, real *beta, real *csl, real *snl, real * csr, real *snr) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset; real r__1, r__2, r__3, r__4, r__5, r__6; /* Local variables */ real r__, t, h1, h2, h3, wi, qq, rr, wr1, wr2, ulp; extern /* Subroutine */ int srot_(integer *, real *, integer *, real *, integer *, real *, real *), slag2_(real *, integer *, real *, integer *, real *, real *, real *, real *, real *, real *); real anorm, bnorm, scale1, scale2; extern /* Subroutine */ int slasv2_(real *, real *, real *, real *, real * , real *, real *, real *, real *); extern doublereal slapy2_(real *, real *); real ascale, bscale; extern doublereal slamch_(char *); real safmin; extern /* Subroutine */ int slartg_(real *, real *, real *, real *, real * ); /* -- LAPACK auxiliary routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SLAGV2 computes the Generalized Schur factorization of a real 2-by-2 */ /* matrix pencil (A,B) where B is upper triangular. This routine */ /* computes orthogonal (rotation) matrices given by CSL, SNL and CSR, */ /* SNR such that */ /* 1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0 */ /* types), then */ /* [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ] */ /* [ 0 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ] */ /* [ b11 b12 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ] */ /* [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ], */ /* 2) if the pencil (A,B) has a pair of complex conjugate eigenvalues, */ /* then */ /* [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ] */ /* [ a21 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ] */ /* [ b11 0 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ] */ /* [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ] */ /* where b11 >= b22 > 0. */ /* Arguments */ /* ========= */ /* A (input/output) REAL array, dimension (LDA, 2) */ /* On entry, the 2 x 2 matrix A. */ /* On exit, A is overwritten by the ``A-part'' of the */ /* generalized Schur form. */ /* LDA (input) INTEGER */ /* THe leading dimension of the array A. LDA >= 2. */ /* B (input/output) REAL array, dimension (LDB, 2) */ /* On entry, the upper triangular 2 x 2 matrix B. */ /* On exit, B is overwritten by the ``B-part'' of the */ /* generalized Schur form. */ /* LDB (input) INTEGER */ /* THe leading dimension of the array B. LDB >= 2. */ /* ALPHAR (output) REAL array, dimension (2) */ /* ALPHAI (output) REAL array, dimension (2) */ /* BETA (output) REAL array, dimension (2) */ /* (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the */ /* pencil (A,B), k=1,2, i = sqrt(-1). Note that BETA(k) may */ /* be zero. */ /* CSL (output) REAL */ /* The cosine of the left rotation matrix. */ /* SNL (output) REAL */ /* The sine of the left rotation matrix. */ /* CSR (output) REAL */ /* The cosine of the right rotation matrix. */ /* SNR (output) REAL */ /* The sine of the right rotation matrix. */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --alphar; --alphai; --beta; /* Function Body */ safmin = slamch_("S"); ulp = slamch_("P"); /* Scale A */ /* Computing MAX */ r__5 = (r__1 = a[a_dim1 + 1], dabs(r__1)) + (r__2 = a[a_dim1 + 2], dabs( r__2)), r__6 = (r__3 = a[(a_dim1 << 1) + 1], dabs(r__3)) + (r__4 = a[(a_dim1 << 1) + 2], dabs(r__4)), r__5 = max(r__5,r__6); anorm = dmax(r__5,safmin); ascale = 1.f / anorm; a[a_dim1 + 1] = ascale * a[a_dim1 + 1]; a[(a_dim1 << 1) + 1] = ascale * a[(a_dim1 << 1) + 1]; a[a_dim1 + 2] = ascale * a[a_dim1 + 2]; a[(a_dim1 << 1) + 2] = ascale * a[(a_dim1 << 1) + 2]; /* Scale B */ /* Computing MAX */ r__4 = (r__3 = b[b_dim1 + 1], dabs(r__3)), r__5 = (r__1 = b[(b_dim1 << 1) + 1], dabs(r__1)) + (r__2 = b[(b_dim1 << 1) + 2], dabs(r__2)), r__4 = max(r__4,r__5); bnorm = dmax(r__4,safmin); bscale = 1.f / bnorm; b[b_dim1 + 1] = bscale * b[b_dim1 + 1]; b[(b_dim1 << 1) + 1] = bscale * b[(b_dim1 << 1) + 1]; b[(b_dim1 << 1) + 2] = bscale * b[(b_dim1 << 1) + 2]; /* Check if A can be deflated */ if ((r__1 = a[a_dim1 + 2], dabs(r__1)) <= ulp) { *csl = 1.f; *snl = 0.f; *csr = 1.f; *snr = 0.f; a[a_dim1 + 2] = 0.f; b[b_dim1 + 2] = 0.f; /* Check if B is singular */ } else if ((r__1 = b[b_dim1 + 1], dabs(r__1)) <= ulp) { slartg_(&a[a_dim1 + 1], &a[a_dim1 + 2], csl, snl, &r__); *csr = 1.f; *snr = 0.f; srot_(&c__2, &a[a_dim1 + 1], lda, &a[a_dim1 + 2], lda, csl, snl); srot_(&c__2, &b[b_dim1 + 1], ldb, &b[b_dim1 + 2], ldb, csl, snl); a[a_dim1 + 2] = 0.f; b[b_dim1 + 1] = 0.f; b[b_dim1 + 2] = 0.f; } else if ((r__1 = b[(b_dim1 << 1) + 2], dabs(r__1)) <= ulp) { slartg_(&a[(a_dim1 << 1) + 2], &a[a_dim1 + 2], csr, snr, &t); *snr = -(*snr); srot_(&c__2, &a[a_dim1 + 1], &c__1, &a[(a_dim1 << 1) + 1], &c__1, csr, snr); srot_(&c__2, &b[b_dim1 + 1], &c__1, &b[(b_dim1 << 1) + 1], &c__1, csr, snr); *csl = 1.f; *snl = 0.f; a[a_dim1 + 2] = 0.f; b[b_dim1 + 2] = 0.f; b[(b_dim1 << 1) + 2] = 0.f; } else { /* B is nonsingular, first compute the eigenvalues of (A,B) */ slag2_(&a[a_offset], lda, &b[b_offset], ldb, &safmin, &scale1, & scale2, &wr1, &wr2, &wi); if (wi == 0.f) { /* two real eigenvalues, compute s*A-w*B */ h1 = scale1 * a[a_dim1 + 1] - wr1 * b[b_dim1 + 1]; h2 = scale1 * a[(a_dim1 << 1) + 1] - wr1 * b[(b_dim1 << 1) + 1]; h3 = scale1 * a[(a_dim1 << 1) + 2] - wr1 * b[(b_dim1 << 1) + 2]; rr = slapy2_(&h1, &h2); r__1 = scale1 * a[a_dim1 + 2]; qq = slapy2_(&r__1, &h3); if (rr > qq) { /* find right rotation matrix to zero 1,1 element of */ /* (sA - wB) */ slartg_(&h2, &h1, csr, snr, &t); } else { /* find right rotation matrix to zero 2,1 element of */ /* (sA - wB) */ r__1 = scale1 * a[a_dim1 + 2]; slartg_(&h3, &r__1, csr, snr, &t); } *snr = -(*snr); srot_(&c__2, &a[a_dim1 + 1], &c__1, &a[(a_dim1 << 1) + 1], &c__1, csr, snr); srot_(&c__2, &b[b_dim1 + 1], &c__1, &b[(b_dim1 << 1) + 1], &c__1, csr, snr); /* compute inf norms of A and B */ /* Computing MAX */ r__5 = (r__1 = a[a_dim1 + 1], dabs(r__1)) + (r__2 = a[(a_dim1 << 1) + 1], dabs(r__2)), r__6 = (r__3 = a[a_dim1 + 2], dabs( r__3)) + (r__4 = a[(a_dim1 << 1) + 2], dabs(r__4)); h1 = dmax(r__5,r__6); /* Computing MAX */ r__5 = (r__1 = b[b_dim1 + 1], dabs(r__1)) + (r__2 = b[(b_dim1 << 1) + 1], dabs(r__2)), r__6 = (r__3 = b[b_dim1 + 2], dabs( r__3)) + (r__4 = b[(b_dim1 << 1) + 2], dabs(r__4)); h2 = dmax(r__5,r__6); if (scale1 * h1 >= dabs(wr1) * h2) { /* find left rotation matrix Q to zero out B(2,1) */ slartg_(&b[b_dim1 + 1], &b[b_dim1 + 2], csl, snl, &r__); } else { /* find left rotation matrix Q to zero out A(2,1) */ slartg_(&a[a_dim1 + 1], &a[a_dim1 + 2], csl, snl, &r__); } srot_(&c__2, &a[a_dim1 + 1], lda, &a[a_dim1 + 2], lda, csl, snl); srot_(&c__2, &b[b_dim1 + 1], ldb, &b[b_dim1 + 2], ldb, csl, snl); a[a_dim1 + 2] = 0.f; b[b_dim1 + 2] = 0.f; } else { /* a pair of complex conjugate eigenvalues */ /* first compute the SVD of the matrix B */ slasv2_(&b[b_dim1 + 1], &b[(b_dim1 << 1) + 1], &b[(b_dim1 << 1) + 2], &r__, &t, snr, csr, snl, csl); /* Form (A,B) := Q(A,B)Z' where Q is left rotation matrix and */ /* Z is right rotation matrix computed from SLASV2 */ srot_(&c__2, &a[a_dim1 + 1], lda, &a[a_dim1 + 2], lda, csl, snl); srot_(&c__2, &b[b_dim1 + 1], ldb, &b[b_dim1 + 2], ldb, csl, snl); srot_(&c__2, &a[a_dim1 + 1], &c__1, &a[(a_dim1 << 1) + 1], &c__1, csr, snr); srot_(&c__2, &b[b_dim1 + 1], &c__1, &b[(b_dim1 << 1) + 1], &c__1, csr, snr); b[b_dim1 + 2] = 0.f; b[(b_dim1 << 1) + 1] = 0.f; } } /* Unscaling */ a[a_dim1 + 1] = anorm * a[a_dim1 + 1]; a[a_dim1 + 2] = anorm * a[a_dim1 + 2]; a[(a_dim1 << 1) + 1] = anorm * a[(a_dim1 << 1) + 1]; a[(a_dim1 << 1) + 2] = anorm * a[(a_dim1 << 1) + 2]; b[b_dim1 + 1] = bnorm * b[b_dim1 + 1]; b[b_dim1 + 2] = bnorm * b[b_dim1 + 2]; b[(b_dim1 << 1) + 1] = bnorm * b[(b_dim1 << 1) + 1]; b[(b_dim1 << 1) + 2] = bnorm * b[(b_dim1 << 1) + 2]; if (wi == 0.f) { alphar[1] = a[a_dim1 + 1]; alphar[2] = a[(a_dim1 << 1) + 2]; alphai[1] = 0.f; alphai[2] = 0.f; beta[1] = b[b_dim1 + 1]; beta[2] = b[(b_dim1 << 1) + 2]; } else { alphar[1] = anorm * wr1 / scale1 / bnorm; alphai[1] = anorm * wi / scale1 / bnorm; alphar[2] = alphar[1]; alphai[2] = -alphai[1]; beta[1] = 1.f; beta[2] = 1.f; } return 0; /* End of SLAGV2 */ } /* slagv2_ */