#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int sgtsvx_(char *fact, char *trans, integer *n, integer * nrhs, real *dl, real *d__, real *du, real *dlf, real *df, real *duf, real *du2, integer *ipiv, real *b, integer *ldb, real *x, integer * ldx, real *rcond, real *ferr, real *berr, real *work, integer *iwork, integer *info) { /* System generated locals */ integer b_dim1, b_offset, x_dim1, x_offset, i__1; /* Local variables */ char norm[1]; extern logical lsame_(char *, char *); real anorm; extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *); extern doublereal slamch_(char *); logical nofact; extern /* Subroutine */ int xerbla_(char *, integer *); extern doublereal slangt_(char *, integer *, real *, real *, real *); extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, integer *, real *, integer *), sgtcon_(char *, integer *, real *, real *, real *, real *, integer *, real *, real *, real *, integer *, integer *); logical notran; extern /* Subroutine */ int sgtrfs_(char *, integer *, integer *, real *, real *, real *, real *, real *, real *, real *, integer *, real *, integer *, real *, integer *, real *, real *, real *, integer *, integer *), sgttrf_(integer *, real *, real *, real *, real *, integer *, integer *), sgttrs_(char *, integer *, integer *, real *, real *, real *, real *, integer *, real *, integer *, integer *); /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SGTSVX uses the LU factorization to compute the solution to a real */ /* system of linear equations A * X = B or A**T * X = B, */ /* where A is a tridiagonal matrix of order N and X and B are N-by-NRHS */ /* matrices. */ /* Error bounds on the solution and a condition estimate are also */ /* provided. */ /* Description */ /* =========== */ /* The following steps are performed: */ /* 1. If FACT = 'N', the LU decomposition is used to factor the matrix A */ /* as A = L * U, where L is a product of permutation and unit lower */ /* bidiagonal matrices and U is upper triangular with nonzeros in */ /* only the main diagonal and first two superdiagonals. */ /* 2. If some U(i,i)=0, so that U is exactly singular, then the routine */ /* returns with INFO = i. Otherwise, the factored form of A is used */ /* to estimate the condition number of the matrix A. If the */ /* reciprocal of the condition number is less than machine precision, */ /* INFO = N+1 is returned as a warning, but the routine still goes on */ /* to solve for X and compute error bounds as described below. */ /* 3. The system of equations is solved for X using the factored form */ /* of A. */ /* 4. Iterative refinement is applied to improve the computed solution */ /* matrix and calculate error bounds and backward error estimates */ /* for it. */ /* Arguments */ /* ========= */ /* FACT (input) CHARACTER*1 */ /* Specifies whether or not the factored form of A has been */ /* supplied on entry. */ /* = 'F': DLF, DF, DUF, DU2, and IPIV contain the factored */ /* form of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV */ /* will not be modified. */ /* = 'N': The matrix will be copied to DLF, DF, and DUF */ /* and factored. */ /* TRANS (input) CHARACTER*1 */ /* Specifies the form of the system of equations: */ /* = 'N': A * X = B (No transpose) */ /* = 'T': A**T * X = B (Transpose) */ /* = 'C': A**H * X = B (Conjugate transpose = Transpose) */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of columns */ /* of the matrix B. NRHS >= 0. */ /* DL (input) REAL array, dimension (N-1) */ /* The (n-1) subdiagonal elements of A. */ /* D (input) REAL array, dimension (N) */ /* The n diagonal elements of A. */ /* DU (input) REAL array, dimension (N-1) */ /* The (n-1) superdiagonal elements of A. */ /* DLF (input or output) REAL array, dimension (N-1) */ /* If FACT = 'F', then DLF is an input argument and on entry */ /* contains the (n-1) multipliers that define the matrix L from */ /* the LU factorization of A as computed by SGTTRF. */ /* If FACT = 'N', then DLF is an output argument and on exit */ /* contains the (n-1) multipliers that define the matrix L from */ /* the LU factorization of A. */ /* DF (input or output) REAL array, dimension (N) */ /* If FACT = 'F', then DF is an input argument and on entry */ /* contains the n diagonal elements of the upper triangular */ /* matrix U from the LU factorization of A. */ /* If FACT = 'N', then DF is an output argument and on exit */ /* contains the n diagonal elements of the upper triangular */ /* matrix U from the LU factorization of A. */ /* DUF (input or output) REAL array, dimension (N-1) */ /* If FACT = 'F', then DUF is an input argument and on entry */ /* contains the (n-1) elements of the first superdiagonal of U. */ /* If FACT = 'N', then DUF is an output argument and on exit */ /* contains the (n-1) elements of the first superdiagonal of U. */ /* DU2 (input or output) REAL array, dimension (N-2) */ /* If FACT = 'F', then DU2 is an input argument and on entry */ /* contains the (n-2) elements of the second superdiagonal of */ /* U. */ /* If FACT = 'N', then DU2 is an output argument and on exit */ /* contains the (n-2) elements of the second superdiagonal of */ /* U. */ /* IPIV (input or output) INTEGER array, dimension (N) */ /* If FACT = 'F', then IPIV is an input argument and on entry */ /* contains the pivot indices from the LU factorization of A as */ /* computed by SGTTRF. */ /* If FACT = 'N', then IPIV is an output argument and on exit */ /* contains the pivot indices from the LU factorization of A; */ /* row i of the matrix was interchanged with row IPIV(i). */ /* IPIV(i) will always be either i or i+1; IPIV(i) = i indicates */ /* a row interchange was not required. */ /* B (input) REAL array, dimension (LDB,NRHS) */ /* The N-by-NRHS right hand side matrix B. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* X (output) REAL array, dimension (LDX,NRHS) */ /* If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X. */ /* LDX (input) INTEGER */ /* The leading dimension of the array X. LDX >= max(1,N). */ /* RCOND (output) REAL */ /* The estimate of the reciprocal condition number of the matrix */ /* A. If RCOND is less than the machine precision (in */ /* particular, if RCOND = 0), the matrix is singular to working */ /* precision. This condition is indicated by a return code of */ /* INFO > 0. */ /* FERR (output) REAL array, dimension (NRHS) */ /* The estimated forward error bound for each solution vector */ /* X(j) (the j-th column of the solution matrix X). */ /* If XTRUE is the true solution corresponding to X(j), FERR(j) */ /* is an estimated upper bound for the magnitude of the largest */ /* element in (X(j) - XTRUE) divided by the magnitude of the */ /* largest element in X(j). The estimate is as reliable as */ /* the estimate for RCOND, and is almost always a slight */ /* overestimate of the true error. */ /* BERR (output) REAL array, dimension (NRHS) */ /* The componentwise relative backward error of each solution */ /* vector X(j) (i.e., the smallest relative change in */ /* any element of A or B that makes X(j) an exact solution). */ /* WORK (workspace) REAL array, dimension (3*N) */ /* IWORK (workspace) INTEGER array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: if INFO = i, and i is */ /* <= N: U(i,i) is exactly zero. The factorization */ /* has not been completed unless i = N, but the */ /* factor U is exactly singular, so the solution */ /* and error bounds could not be computed. */ /* RCOND = 0 is returned. */ /* = N+1: U is nonsingular, but RCOND is less than machine */ /* precision, meaning that the matrix is singular */ /* to working precision. Nevertheless, the */ /* solution and error bounds are computed because */ /* there are a number of situations where the */ /* computed solution can be more accurate than the */ /* value of RCOND would suggest. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --dl; --d__; --du; --dlf; --df; --duf; --du2; --ipiv; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; --ferr; --berr; --work; --iwork; /* Function Body */ *info = 0; nofact = lsame_(fact, "N"); notran = lsame_(trans, "N"); if (! nofact && ! lsame_(fact, "F")) { *info = -1; } else if (! notran && ! lsame_(trans, "T") && ! lsame_(trans, "C")) { *info = -2; } else if (*n < 0) { *info = -3; } else if (*nrhs < 0) { *info = -4; } else if (*ldb < max(1,*n)) { *info = -14; } else if (*ldx < max(1,*n)) { *info = -16; } if (*info != 0) { i__1 = -(*info); xerbla_("SGTSVX", &i__1); return 0; } if (nofact) { /* Compute the LU factorization of A. */ scopy_(n, &d__[1], &c__1, &df[1], &c__1); if (*n > 1) { i__1 = *n - 1; scopy_(&i__1, &dl[1], &c__1, &dlf[1], &c__1); i__1 = *n - 1; scopy_(&i__1, &du[1], &c__1, &duf[1], &c__1); } sgttrf_(n, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[1], info); /* Return if INFO is non-zero. */ if (*info > 0) { *rcond = 0.f; return 0; } } /* Compute the norm of the matrix A. */ if (notran) { *(unsigned char *)norm = '1'; } else { *(unsigned char *)norm = 'I'; } anorm = slangt_(norm, n, &dl[1], &d__[1], &du[1]); /* Compute the reciprocal of the condition number of A. */ sgtcon_(norm, n, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[1], &anorm, rcond, &work[1], &iwork[1], info); /* Compute the solution vectors X. */ slacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx); sgttrs_(trans, n, nrhs, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[1], &x[ x_offset], ldx, info); /* Use iterative refinement to improve the computed solutions and */ /* compute error bounds and backward error estimates for them. */ sgtrfs_(trans, n, nrhs, &dl[1], &d__[1], &du[1], &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[1], &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1] , &berr[1], &work[1], &iwork[1], info); /* Set INFO = N+1 if the matrix is singular to working precision. */ if (*rcond < slamch_("Epsilon")) { *info = *n + 1; } return 0; /* End of SGTSVX */ } /* sgtsvx_ */