#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int sgtcon_(char *norm, integer *n, real *dl, real *d__, real *du, real *du2, integer *ipiv, real *anorm, real *rcond, real * work, integer *iwork, integer *info) { /* System generated locals */ integer i__1; /* Local variables */ integer i__, kase, kase1; extern logical lsame_(char *, char *); integer isave[3]; extern /* Subroutine */ int slacn2_(integer *, real *, real *, integer *, real *, integer *, integer *), xerbla_(char *, integer *); real ainvnm; logical onenrm; extern /* Subroutine */ int sgttrs_(char *, integer *, integer *, real *, real *, real *, real *, integer *, real *, integer *, integer *); /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* Modified to call SLACN2 in place of SLACON, 7 Feb 03, SJH. */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SGTCON estimates the reciprocal of the condition number of a real */ /* tridiagonal matrix A using the LU factorization as computed by */ /* SGTTRF. */ /* An estimate is obtained for norm(inv(A)), and the reciprocal of the */ /* condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). */ /* Arguments */ /* ========= */ /* NORM (input) CHARACTER*1 */ /* Specifies whether the 1-norm condition number or the */ /* infinity-norm condition number is required: */ /* = '1' or 'O': 1-norm; */ /* = 'I': Infinity-norm. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* DL (input) REAL array, dimension (N-1) */ /* The (n-1) multipliers that define the matrix L from the */ /* LU factorization of A as computed by SGTTRF. */ /* D (input) REAL array, dimension (N) */ /* The n diagonal elements of the upper triangular matrix U from */ /* the LU factorization of A. */ /* DU (input) REAL array, dimension (N-1) */ /* The (n-1) elements of the first superdiagonal of U. */ /* DU2 (input) REAL array, dimension (N-2) */ /* The (n-2) elements of the second superdiagonal of U. */ /* IPIV (input) INTEGER array, dimension (N) */ /* The pivot indices; for 1 <= i <= n, row i of the matrix was */ /* interchanged with row IPIV(i). IPIV(i) will always be either */ /* i or i+1; IPIV(i) = i indicates a row interchange was not */ /* required. */ /* ANORM (input) REAL */ /* If NORM = '1' or 'O', the 1-norm of the original matrix A. */ /* If NORM = 'I', the infinity-norm of the original matrix A. */ /* RCOND (output) REAL */ /* The reciprocal of the condition number of the matrix A, */ /* computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an */ /* estimate of the 1-norm of inv(A) computed in this routine. */ /* WORK (workspace) REAL array, dimension (2*N) */ /* IWORK (workspace) INTEGER array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input arguments. */ /* Parameter adjustments */ --iwork; --work; --ipiv; --du2; --du; --d__; --dl; /* Function Body */ *info = 0; onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O"); if (! onenrm && ! lsame_(norm, "I")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*anorm < 0.f) { *info = -8; } if (*info != 0) { i__1 = -(*info); xerbla_("SGTCON", &i__1); return 0; } /* Quick return if possible */ *rcond = 0.f; if (*n == 0) { *rcond = 1.f; return 0; } else if (*anorm == 0.f) { return 0; } /* Check that D(1:N) is non-zero. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { if (d__[i__] == 0.f) { return 0; } /* L10: */ } ainvnm = 0.f; if (onenrm) { kase1 = 1; } else { kase1 = 2; } kase = 0; L20: slacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave); if (kase != 0) { if (kase == kase1) { /* Multiply by inv(U)*inv(L). */ sgttrs_("No transpose", n, &c__1, &dl[1], &d__[1], &du[1], &du2[1] , &ipiv[1], &work[1], n, info); } else { /* Multiply by inv(L')*inv(U'). */ sgttrs_("Transpose", n, &c__1, &dl[1], &d__[1], &du[1], &du2[1], & ipiv[1], &work[1], n, info); } goto L20; } /* Compute the estimate of the reciprocal condition number. */ if (ainvnm != 0.f) { *rcond = 1.f / ainvnm / *anorm; } return 0; /* End of SGTCON */ } /* sgtcon_ */