#include "f2c.h" #include "blaswrap.h" /* Table of constant values */ static doublereal c_b4 = 1.; /* Subroutine */ int dlanv2_(doublereal *a, doublereal *b, doublereal *c__, doublereal *d__, doublereal *rt1r, doublereal *rt1i, doublereal *rt2r, doublereal *rt2i, doublereal *cs, doublereal *sn) { /* System generated locals */ doublereal d__1, d__2; /* Builtin functions */ double d_sign(doublereal *, doublereal *), sqrt(doublereal); /* Local variables */ doublereal p, z__, aa, bb, cc, dd, cs1, sn1, sab, sac, eps, tau, temp, scale, bcmax, bcmis, sigma; extern doublereal dlapy2_(doublereal *, doublereal *), dlamch_(char *); /* -- LAPACK driver routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric */ /* matrix in standard form: */ /* [ A B ] = [ CS -SN ] [ AA BB ] [ CS SN ] */ /* [ C D ] [ SN CS ] [ CC DD ] [-SN CS ] */ /* where either */ /* 1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or */ /* 2) AA = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex */ /* conjugate eigenvalues. */ /* Arguments */ /* ========= */ /* A (input/output) DOUBLE PRECISION */ /* B (input/output) DOUBLE PRECISION */ /* C (input/output) DOUBLE PRECISION */ /* D (input/output) DOUBLE PRECISION */ /* On entry, the elements of the input matrix. */ /* On exit, they are overwritten by the elements of the */ /* standardised Schur form. */ /* RT1R (output) DOUBLE PRECISION */ /* RT1I (output) DOUBLE PRECISION */ /* RT2R (output) DOUBLE PRECISION */ /* RT2I (output) DOUBLE PRECISION */ /* The real and imaginary parts of the eigenvalues. If the */ /* eigenvalues are a complex conjugate pair, RT1I > 0. */ /* CS (output) DOUBLE PRECISION */ /* SN (output) DOUBLE PRECISION */ /* Parameters of the rotation matrix. */ /* Further Details */ /* =============== */ /* Modified by V. Sima, Research Institute for Informatics, Bucharest, */ /* Romania, to reduce the risk of cancellation errors, */ /* when computing real eigenvalues, and to ensure, if possible, that */ /* abs(RT1R) >= abs(RT2R). */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ eps = dlamch_("P"); if (*c__ == 0.) { *cs = 1.; *sn = 0.; goto L10; } else if (*b == 0.) { /* Swap rows and columns */ *cs = 0.; *sn = 1.; temp = *d__; *d__ = *a; *a = temp; *b = -(*c__); *c__ = 0.; goto L10; } else if (*a - *d__ == 0. && d_sign(&c_b4, b) != d_sign(&c_b4, c__)) { *cs = 1.; *sn = 0.; goto L10; } else { temp = *a - *d__; p = temp * .5; /* Computing MAX */ d__1 = abs(*b), d__2 = abs(*c__); bcmax = max(d__1,d__2); /* Computing MIN */ d__1 = abs(*b), d__2 = abs(*c__); bcmis = min(d__1,d__2) * d_sign(&c_b4, b) * d_sign(&c_b4, c__); /* Computing MAX */ d__1 = abs(p); scale = max(d__1,bcmax); z__ = p / scale * p + bcmax / scale * bcmis; /* If Z is of the order of the machine accuracy, postpone the */ /* decision on the nature of eigenvalues */ if (z__ >= eps * 4.) { /* Real eigenvalues. Compute A and D. */ d__1 = sqrt(scale) * sqrt(z__); z__ = p + d_sign(&d__1, &p); *a = *d__ + z__; *d__ -= bcmax / z__ * bcmis; /* Compute B and the rotation matrix */ tau = dlapy2_(c__, &z__); *cs = z__ / tau; *sn = *c__ / tau; *b -= *c__; *c__ = 0.; } else { /* Complex eigenvalues, or real (almost) equal eigenvalues. */ /* Make diagonal elements equal. */ sigma = *b + *c__; tau = dlapy2_(&sigma, &temp); *cs = sqrt((abs(sigma) / tau + 1.) * .5); *sn = -(p / (tau * *cs)) * d_sign(&c_b4, &sigma); /* Compute [ AA BB ] = [ A B ] [ CS -SN ] */ /* [ CC DD ] [ C D ] [ SN CS ] */ aa = *a * *cs + *b * *sn; bb = -(*a) * *sn + *b * *cs; cc = *c__ * *cs + *d__ * *sn; dd = -(*c__) * *sn + *d__ * *cs; /* Compute [ A B ] = [ CS SN ] [ AA BB ] */ /* [ C D ] [-SN CS ] [ CC DD ] */ *a = aa * *cs + cc * *sn; *b = bb * *cs + dd * *sn; *c__ = -aa * *sn + cc * *cs; *d__ = -bb * *sn + dd * *cs; temp = (*a + *d__) * .5; *a = temp; *d__ = temp; if (*c__ != 0.) { if (*b != 0.) { if (d_sign(&c_b4, b) == d_sign(&c_b4, c__)) { /* Real eigenvalues: reduce to upper triangular form */ sab = sqrt((abs(*b))); sac = sqrt((abs(*c__))); d__1 = sab * sac; p = d_sign(&d__1, c__); tau = 1. / sqrt((d__1 = *b + *c__, abs(d__1))); *a = temp + p; *d__ = temp - p; *b -= *c__; *c__ = 0.; cs1 = sab * tau; sn1 = sac * tau; temp = *cs * cs1 - *sn * sn1; *sn = *cs * sn1 + *sn * cs1; *cs = temp; } } else { *b = -(*c__); *c__ = 0.; temp = *cs; *cs = -(*sn); *sn = temp; } } } } L10: /* Store eigenvalues in (RT1R,RT1I) and (RT2R,RT2I). */ *rt1r = *a; *rt2r = *d__; if (*c__ == 0.) { *rt1i = 0.; *rt2i = 0.; } else { *rt1i = sqrt((abs(*b))) * sqrt((abs(*c__))); *rt2i = -(*rt1i); } return 0; /* End of DLANV2 */ } /* dlanv2_ */